51 research outputs found

    Enlarged infarct volume and loss of BDNF mRNA induction following brain ischemia in mice lacking FGF-2

    Get PDF
    FGF-2, a potent multifunctional and neurotrophic growth factor, is widely expressed in the brain and upregulated in cerebral ischemia. Previous studies have shown that intraventricularly or systemically administered FGF-2 reduces the size of cerebral infarcts. Whether endogenous FGF-2 is beneficial for the outcome of cerebral ischemia has not been investigated. We have used mice with a null mutation of the fgf2 gene to explore the relevance of endogenous FGF-2 in brain ischemia. Focal cerebral ischemia was produced by occlusion of the middle cerebral artery (MCAO). We found a 75% increase in infarct volume in fgf2 knock-out mice versus wild type littermates (P < 0.05). This difference in the extent of ischemic damage was observed after 24 h, and correlated with decreased viability in fgf2 mutant mice following MCA occlusion. Increased infarct volume in fgf2 null mice was associated with a loss of induction in hippocampal BDNF and trkB mRNA expression. These findings indicate that signaling through trkB may contribute to ameliorating brain damage following ischemia and that bdnf and trkB may be target genes of FGF-2. Together, our data provide the first evidence that endogenous FGF-2 is important in coping with ischemic brain damage suggesting fgf2 as one crucial target gene for new therapeutic strategies in brain ischemia

    Combined drug action of 2-phenylimidazo[2,1-b]benzothiazole derivatives on cancer cells according to their oncogenic molecular signatures

    Get PDF
    International audienceThe development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by "RTK swapping" by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation

    Combined drug action of 2-phenylimidazo[2,1-b]benzothiazole derivatives on cancer cells according to their oncogenic molecular signatures

    Get PDF
    The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by 'RTK swapping' by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation

    Fine-tuning of cell signaling by glypicans.

    No full text
    International audienceSignaling peptides of the extracellular environment regulate cell biological processes underlying embryonic development, tissue homeostasis, and pathophysiology. The heparan sulphate proteoglycans, glypicans, have evolved as essential modulators of key regulatory proteins such as Wnt, Bmp, Fgf, and Shh. By acting on signal spreading and receptor activation, glypicans can control signal read-out and fate in targeted cells. Genetic and embryological studies have highlighted that glypicans act in a temporal and spatially regulated manner to modulate distinct cellular events. However, alterations of glypican function underlie human congenital malformations and cancer. Recent reports are starting to reveal their mechanism of action and how they can ensure tight modulation of cell signaling

    Etude fonctionnelle du système HGF/Met au cours du développement normal et pathologique du système nerveux central

    No full text
    Les signaux participant au développement embryonnaire du système nerveux central peuvent à nouveau intervenir à l âge adulte, notamment lors d une pathologie. Nous avons analysé si le couple HGF/Met peut avoir de telles fonctions. Aussi, nous avons généré des souris porteuses d une mutation conditionnelle de Met spécifique du système nerveux. Nous avons montré que 1) dans le cerveau, Met participe à l établissement de l équilibre entre circuits excitateurs et inhibiteurs et 2) dans la moelle épinière, HGF/Met sont requis in vivo pour la survie d un sous-type de motoneurones. Nous avons aussi montré l intérêt du rôle neuroprotecteur de Met dans deux conditions pathologiques : un modèle murin de la sclérose latérale amyotrophique et dans la rétine après axotomie du nerf optique. Cette étude a montré que le système HGF/Met possède des propriétés trophiques spécifiques lors du développement des MNs et permet dans le cas d une neurodégénérescence de protéger les neurones contre l apoptose.Signals involved in development of the embryonic central nervous system can also play a role during adulthood, particularly in some pathologies. In order to analyze whether the HGF/Met system would have such functions, we generated met conditional mutant mice in which met is specifically removed in the nervous system. Using these mice, we have shown that 1) in the brain, Met is part of a system which controls the balance between excitatory and inhibitory circuits and 2) in the spinal cord, HGF/Met signaling is required in vivo for the survival of a specific subtype of motor neurons (MNs). We have also demonstrated the neuroprotective effect of HGF/Met in two pathological conditions such as the amyotrophic lateral sclerosis and after optic nerve axotomy. In conclusion, this work has allowed us to show the trophic properties of HGF/Met during normal development of specific subtypes of MNs, and its neuroprotective effect in neurodegenerative mouse modelsAIX-MARSEILLE2-BU Sci.Luminy (130552106) / SudocSudocFranceF

    Disruption of Epithelial Integrity Drives Mesendoderm Differentiation in Human Induced Pluripotent Stem Cells by Enabling BMP and ACTIVIN Sensing

    No full text
    ABSTRACT The processes of primitive streak formation and fate specification in the mammalian epiblast rely on complex interactions between morphogens and tissue organization. Little is known about how these instructive cues functionally interact to regulate gastrulation. We interrogated the interplay between tissue organization and morphogens by using human induced pluripotent stem cells (hiPSCs) down-regulated for the morphogen regulator GLYPICAN-4, in which defects in tight junctions result in areas of disrupted epithelial integrity. Remarkably, this phenotype does not affect hiPSC stemness, but impacts on cell fate acquisition processes. Strikingly, cells within disrupted areas become competent to perceive BMP4 and ACTIVIN A/NODAL gastrulation signals and thus, differentiate into mesendoderm. Yet, disruption of epithelial integrity prolongs temporal activation of BMP4 and ACTIVIN A/NODAL downstream effectors and correlates with enhanced hiPSC endoderm/mesoderm differentiation potential. Altogether, our results disclose epithelial cell integrity as a key determinant of TGF- β activity and highlight a new mechanism guiding morphogen sensing and spatial cell fate change within an epithelium
    • …
    corecore