528 research outputs found
Is copyright blind to the visual?
This article argues that, with respect to the copyright protection of works of visual art, the general uneasiness that has always pervaded the relationship between copyright law and concepts of creativity produces three anomalous results. One of these is that copyright lacks much in the way of a central concept of 'visual art' and, to the extent that it embraces any concept of the 'visual', it is rooted in the rhetorical discourse of the Renaissance. This means that copyright is poorly equipped to deal with modern developments in the visual arts. Secondly, the pervasive effect of rhetorical discourse appears to have made it particularly difficult for copyright law to strike a meaningful balance between protecting creativity and permitting its use in further creative works. Thirdly, just when rhetorical discourse might have been useful in identifying the significance and materiality of the unique one-off work of visual art, copyright law chooses to ignore its implications
Leukocyte Count and Intracerebral Hemorrhage Expansion
BACKGROUND AND PURPOSE: Acute leukocytosis is a well-established response to intracerebral hemorrhage (ICH). Leukocytes, because of their interaction with platelets and coagulation factors, may in turn play a role in hemostasis. We investigated whether admission leukocytosis was associated with reduced bleeding following acute ICH. METHODS: Consecutive patients with primary ICH were prospectively collected from 1994 to 2015 and retrospectively analyzed. We included subjects with a follow-up CT scan available and automated complete white blood cell (WBC) count performed within 48 h from onset. Baseline and follow-up hematoma volumes were calculated with semi-automated software and hematoma expansion was defined as volume increase > 30% or 6 mL. The association between WBC count and ICH expansion was investigated with multivariate logistic regression. RESULTS: 1302 subjects met eligibility criteria (median age 75 years, 55.8 % males), of whom 207 (15.9 %) experienced hematoma expansion. Higher leukocyte count on admission was associated with reduced risk of hematoma expansion (Odds Ratio for 1000 cells increase [OR] 0.91, 95 % Confidence Interval [CI] 0.86–0.96, p=0.001). The risk of hematoma expansion was inversely associated with neutrophil count (OR 0.90, 95 % CI 0.85–0.96, p=0.001) and directly associated with monocyte count (OR 2.71, 95 % CI 1.08–6.83, p=0.034). There was no association between lymphocyte count and ICH expansion (OR 0.96, 95 % CI 0.79–1.17, p=0.718). CONCLUSIONS: Higher admission WBC count is associated with lower risk of hematoma expansion. This highlights a potential role of the inflammatory response in modulating the coagulation cascade following acute ICH
Disparities in brain health comorbidity management in intracerebral hemorrhage
BackgroundIntracerebral hemorrhage (ICH) disproportionally affects underserved populations, and coincides with risk factors for cardiovascular events and cognitive decline after ICH. We investigated associations between social determinants of health and management of blood pressure (BP), hyperlipidemia, diabetes, obstructive sleep apnea (OSA), and hearing impairment before and after ICH hospitalization.MethodsSurvivors of the Massachusetts General Hospital longitudinal ICH study between 2016 and 2019 who received healthcare at least 6 months after ICH were analyzed. Measurements of BP, LDL and HbA1c and their management in the year surrounding ICH and referrals for sleep studies and audiology up to 6 months after ICH were gathered from electronic health records. The US-wide area deprivation index (ADI) was used as proxy for social determinants of health.ResultsThe study included 234 patients (mean 71 years, 42% female). BP measurements were performed in 109 (47%) before ICH, LDL measurements were performed in 165 (71%), and HbA1c measurements in 154 (66%) patients before or after ICH. 27/59 (46%) with off-target LDL and 3/12 (25%) with off-target HbA1c were managed appropriately. Of those without history of OSA or hearing impairment before ICH, 47/207 (23%) were referred for sleep studies and 16/212 (8%) to audiology. Higher ADI was associated with lower odds of BP, LDL, and HbA1c measurement prior to ICH [OR 0.94 (0.90–0.99), 0.96 (0.93–0.99), and 0.96 (0.93–0.99), respectively, per decile] but not with management during or after hospitalization.ConclusionSocial determinants of health are associated with pre-ICH management of cerebrovascular risk factors. More than 25% of patients were not assessed for hyperlipidemia and diabetes in the year surrounding ICH hospitalization, and less than half of those with off-target values received treatment intensification. Few patients were evaluated for OSA and hearing impairment, both common among ICH survivors. Future trials should evaluate whether using the ICH hospitalization to systematically address co-morbidities can improve long-term outcomes
Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
Objective We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. Methods We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. Results We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p 0.1). Conclusion: s Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF
Genetic risk prediction of atrial fibrillation
Background—Atrial fibrillation (AF) has a substantial genetic basis. Identification of individuals at greatest AF risk could minimize the incidence of cardioembolic stroke.
Methods—To determine whether genetic data can stratify risk for development of AF, we examined associations between AF genetic risk scores and incident AF in five prospective studies comprising 18,919 individuals of European ancestry. We examined associations between AF genetic risk scores and ischemic stroke in a separate study of 509 ischemic stroke cases (202 cardioembolic [40%]) and 3,028 referents. Scores were based on 11 to 719 common variants (≥5%) associated with AF at P-values ranging from <1x10-3 to <1x10-8 in a prior independent genetic association study.
Results—Incident AF occurred in 1,032 (5.5%) individuals. AF genetic risk scores were associated with new-onset AF after adjusting for clinical risk factors. The pooled hazard ratio for incident AF for the highest versus lowest quartile of genetic risk scores ranged from 1.28 (719 variants; 95%CI, 1.13-1.46; P=1.5x10-4) to 1.67 (25 variants; 95%CI, 1.47-1.90; P=9.3x10-15). Discrimination of combined clinical and genetic risk scores varied across studies and scores (maximum C statistic, 0.629-0.811; maximum ΔC statistic from clinical score alone, 0.009-0.017). AF genetic risk was associated with stroke in age- and sex-adjusted models. For example, individuals in the highest versus lowest quartile of a 127-variant score had a 2.49-fold increased odds of cardioembolic stroke (95%CI, 1.39-4.58; P=2.7x10-3). The effect persisted after excluding individuals (n=70) with known AF (odds ratio, 2.25; 95%CI, 1.20-4.40; P=0.01).
Conclusions—Comprehensive AF genetic risk scores were associated with incident AF beyond associations for clinical AF risk factors, though offered small improvements in discrimination. AF genetic risk was also associated with cardioembolic stroke in age- and sex-adjusted analyses. Efforts are warranted to determine whether AF genetic risk may improve identification of subclinical AF or help distinguish between stroke mechanisms
Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
Objective: We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk.
Methods: We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.
Results: We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 × 10−4 in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 × 10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07, p = 0.004), but no other primary stroke subtypes (all p > 0.1).
Conclusions: Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF
Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies
<p>Background - Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes.</p>
<p>Methods - We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls.</p>
<p>Findings - We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort.</p>
<p>Interpretation - Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes.</p>
Subtype Specificity of Genetic Loci Associated With Stroke in 16 664 Cases and 32 792 Controls
Background: Genome-wide association studies have identified multiple loci associated with stroke. However, the specific stroke subtypes affected, and whether loci influence both ischemic and hemorrhagic stroke, remains unknown. For loci associated with stroke, we aimed to infer the combination of stroke subtypes likely to be affected, and in doing so assess the extent to which such loci have homogeneous effects across stroke subtypes. Methods: We performed Bayesian multinomial regression in 16 664 stroke cases and 32 792 controls of European ancestry to determine the most likely combination of stroke subtypes affected for loci with published genome-wide stroke associations, using model selection. Cases were subtyped under 2 commonly used stroke classification systems, TOAST (Trial of Org 10172 Acute Stroke Treatment) and causative classification of stroke. All individuals had genotypes imputed to the Haplotype Reference Consortium 1.1 Panel. Results: Sixteen loci were considered for analysis. Seven loci influenced both hemorrhagic and ischemic stroke, 3 of which influenced ischemic and hemorrhagic subtypes under both TOAST and causative classification of stroke. Under causative classification of stroke, 4 loci influenced both small vessel stroke and intracerebral hemorrhage. An EDNRA locus demonstrated opposing effects on ischemic and hemorrhagic stroke. No loci were predicted to influence all stroke subtypes in the same direction, and only one locus (12q24) was predicted to influence all ischemic stroke subtypes. Conclusions: Heterogeneity in the influence of stroke-associated loci on stroke subtypes is pervasive, reflecting differing causal pathways. However, overlap exists between hemorrhagic and ischemic stroke, which may reflect shared pathobiology predisposing to small vessel arteriopathy. Stroke is a complex, heterogeneous disorder requiring tailored analytic strategies to decipher genetic mechanisms
Subtype Specificity of Genetic Loci Associated With Stroke in 16 664 Cases and 32 792 Controls
Background: Genome-wide association studies have identified multiple loci associated with stroke. However, the specific stroke subtypes affected, and whether loci influence both ischemic and hemorrhagic stroke, remains unknown. For loci associated with stroke, we aimed to infer the combination of stroke subtypes likely to be affected, and in doing so assess the extent to which such loci have homogeneous effects across stroke subtypes. Methods: We performed Bayesian multinomial regression in 16 664 stroke cases and 32 792 controls of European ancestry to determine the most likely combination of stroke subtypes affected for loci with published genome-wide stroke associations, using model selection. Cases were subtyped under 2 commonly used stroke classification systems, TOAST (Trial of Org 10172 Acute Stroke Treatment) and causative classification of stroke. All individuals had genotypes imputed to the Haplotype Reference Consortium 1.1 Panel. Results: Sixteen loci were considered for analysis. Seven loci influenced both hemorrhagic and ischemic stroke, 3 of which influenced ischemic and hemorrhagic subtypes under both TOAST and causative classification of stroke. Under causative classification of stroke, 4 loci influenced both small vessel stroke and intracerebral hemorrhage. An EDNRA locus demonstrated opposing effects on ischemic and hemorrhagic stroke. No loci were predicted to influence all stroke subtypes in the same direction, and only one locus (12q24) was predicted to influence all ischemic stroke subtypes. Conclusions: Heterogeneity in the influence of stroke-associated loci on stroke subtypes is pervasive, reflecting differing causal pathways. However, overlap exists between hemorrhagic and ischemic stroke, which may reflect shared pathobiology predisposing to small vessel arteriopathy. Stroke is a complex, heterogeneous disorder requiring tailored analytic strategies to decipher genetic mechanisms
- …