37 research outputs found

    Generation of induced pluripotent stem cells (iPSCs) from patient with Cri du Chat Syndrome

    Get PDF
    Abstract The Cri du Chat Syndrome (CdCS) is a genetic disease resulting from variable size deletion occurring on the short arm of chromosome 5. The main clinical features are a high-pitched monochromatic cry, microcephaly, severe psychomotor and mental retardation with characteristics of autism spectrum disorders such as hand flapping, obsessive attachments to objects, twirling objects, repetitive movements, and rocking. We reprogrammed to pluripotency peripheral blood mononuclear cells derived from a patient carrying large deletion on the short arm of chromosome 5, using a commercially available non-integrating expression system. The iPSCs expressed pluripotency markers and differentiated in the three embryonic germ layers

    Generation of 3 clones of induced pluripotent stem cells (iPSCs) from a patient affected by Autosomal Recessive Osteopetrosis due to mutations in TCIRG1 gene.

    Get PDF
    Abstract Autosomal recessive osteopetrosis (ARO) is a rare inherited disorder leading to increased bone density with impairment in bone resorption. Among the genes responsible for ARO, the TCIRG1 gene, coding for the a3 subunit of the osteoclast proton pump, is mutated in more than 50% of the cases, increasing the importance of TCIRG1-iPSCs as disease model. We generated 3 iPSC clones derived from Peripheral Blood Mononuclear Cells (PBMCs) of a patient carrying the heterozygous mutations p.Y512X and c.2236+1G>A. A Sendai virus-based vector was used and the iPSCs were characterized for genetic identity to parental cells, genomic integrity, pluripotency, and differentiation ability

    Generation of induced pluripotent stem cell (iPSC) lines from a Joubert syndrome patient with compound heterozygous mutations in C5orf42 gene.

    Get PDF
    We have generated new disease-specific induced pluripotent stem cell (iPSC) lines from skin fibroblasts obtained from a female patient with Joubert syndrome (JS) caused by compound heterozygous mutations in C5orf42 gene. The generated iPSCs offer an unprecedented opportunity to obtain iPSC-derived neurons to investigate the pathogenesis of JS in vitro and to develop therapeutic strategies

    Establishment of three Joubert syndrome-derived induced pluripotent stem cell (iPSC) lines harbouring compound heterozygous mutations in CC2D2A gene.

    Get PDF
    We have developed Joubert syndrome (JS)-derived induced pluripotent stem cell (iPSC) lines from dermal fibroblasts biopsied from a female patient harbouring novel compound heterozygous mutations in CC2D2A gene. The newly established iPSC lines provide tremendous promises for development of JS-derived neuronal cell lines to uncover the molecular and cellular mechanisms underlying the pathogenesis of JS and to develop therapeutic interventions for treatment of JS

    Establishment of three iPSC lines from fibroblasts of a patient with Aicardi Goutières syndrome mutated in RNaseH2B.

    Get PDF
    Abstract We report the generation of three isogenic iPSC clones (UNIBSi007-A, UNIBSi007-B, and UNIBSi007-C) obtained from fibroblasts of a patient with Aicardi Goutieres Syndrome (AGS) carrying a homozygous mutation in RNaseH2B. Cells were transduced using a Sendai virus based system, delivering the human OCT4, SOX2, c-MYC and KLF4 transcription factors. The resulting transgene-free iPSC lines retained the disease-causing DNA mutation, showed normal karyotype, expressed pluripotent markers and could differentiate in vitro toward cells of the three embryonic germ layers

    Impaired natural killer cell functions in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations

    Get PDF
    Gain-of-function (GOF) mutations affecting the coiled-coil domain or the DNA-binding domain of signal transducer and activator of transcription 1 (STAT1) cause chronic mucocutaneous candidiasis disease. This condition is characterized by fungal and bacterial infections caused by impaired generation of TH17 cells; meanwhile, some patients with chronic mucocutaneous candidiasis disease might also have viral or intracellular pathogen infections

    Nebulized jet-based printing of bio-electrical scaffolds for neural tissue engineering: a feasibility study

    Get PDF
    In this paper we investigate the application of a direct writing technique for printing conductive patterns onto a biocompatible electrospun-pyrolysed carbon-fibre-based substrate. The result is a first study towards the production of bio-electrical scaffolds that could be used to enhance the promotion of efficient connections among neurons for in vitro studies in the field of neural tissue engineering. An electrospinning process is employed for production of the materials derived from the precursor polyacrylonitrile, in which the embedding of carbon nanotubes (CNTs) is also investigated. Subsequently, the methodology of research into suitable parameters for the printed electronics, using a commercial silver nanoparticle (Øavg,particle size ∼ 100 nm) ink, is described. The results show values of 2 Ω cm for the resistivity of the carbon-fibre materials and conductive printed lines of resistance ∼50 Ω on glass and less than ∼140 Ω on carbon-fibre samples. Biocompatibility results demonstrate the possibility of using electrospun-pyrolysed mats, also with embedded CNTs, as potential neural substrates for spatially localized electrical stimulation across a tissue. In addition, the data concerning the potential toxicity of silver suspensions are in accordance with the literature, showing a dose-dependent behaviour. This work is a pioneering feasibility study of the use of the flexible and versatile printed electronic approach, combined with engineered biocompatible substrates, to realize integrated bio-electrical scaffolds for in vitro neural tissue engineering applications.status: publishe
    corecore