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Abstract
In this paperwe investigate the application of a direct writing technique for printing conductive
patterns onto a biocompatible electrospun-pyrolysed carbon-fibre-based substrate. The result is afirst
study towards the production of bio-electrical scaffolds that could be used to enhance the promotion
of efficient connections among neurons for in vitro studies in thefield of neural tissue engineering. An
electrospinning process is employed for production of thematerials derived from the precursor
polyacrylonitrile, inwhich the embedding of carbon nanotubes (CNTs) is also investigated.
Subsequently, themethodology of research into suitable parameters for the printed electronics, using
a commercial silver nanoparticle (Øavg,particle size∼100 nm) ink, is described. The results show values
of 2Ω cm for the resistivity of the carbon-fibrematerials and conductive printed lines of resistance
∼50Ω on glass and less than∼140Ω on carbon-fibre samples. Biocompatibility results demonstrate
the possibility of using electrospun-pyrolysedmats, alsowith embeddedCNTs, as potential neural
substrates for spatially localized electrical stimulation across a tissue. In addition, the data concerning
the potential toxicity of silver suspensions are in accordancewith the literature, showing a dose-
dependent behaviour. This work is a pioneering feasibility study of the use of theflexible and versatile
printed electronic approach, combinedwith engineered biocompatible substrates, to realize
integrated bio-electrical scaffolds for in vitro neural tissue engineering applications.

1. Introduction

Every year neuro-degenerative diseases (e.g. Alzhei-
mer’s, Parkinson’s) have direct consequences for
millions of people. Nine out of ten individuals over the
age of 80 years will probably suffer from a brain
disorder, which account for ∼35% of all human
diseases [1].

Because of the poor regenerative capacity of the
central nervous system [2], neural tissue engineering
investigates the design and production of scaffolds to
restore the functions of injured neural tissues [3]. Scaf-
folds act as a means of mimicking the complex in vivo
neural environment, focusing on different guidance
cues such as molecular, electrical, topographical or
chemical ones [2]. In the ideal case, a combination of
these cues will produce a synthetic fabric similar to the

natural extracellular matrix (ECM), which governs the
physiology of neural cells [4].

Over the last century, a large number of bio-
compatible materials were developed using several
techniques. Boni et al [5] reviewed different natural
and synthetic polymers, with specifications aimed at
emphasizing adhesion, growth, orientation, prolifera-
tion and differentiation of different types of neuronal
and neural cells.

Among the techniques most often used to produce
biocompatible scaffolds, electrospinning is well known
to produce suitable scaffolds for adhesion, proliferation
and extension of neurons [6]. This technique is able to
electrospin various materials including biodegradable,
non-degradable and natural materials [7]. Its main
advantage is the ability to produce non-woven polymer
mats consisting of nanofibres in a versatile, flexible and
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affordable way [8]. Fibre diameters can range from
several nanometres to a fewmicrometres, and the possi-
bility of controlling their desired viscosity and con-
ductivity of the solution facilitates the production of
engineered neural scaffolds. Specifically, electrospun
nanofibres can be assembled into scaffolds by manip-
ulating their morphology, alignment, stacking and/or
folding behaviour [9]. As reported by Xie et al [10],
anisotropic fibre arrangements show a effective cues
to direct and enhance neurite outgrowth than isotropic
materials such as hydrogels. For instance, cell differ-
entiation and enhancement of neurite outgrowth
have been tested on aligned poly(L-lactic acid) nano/
microfibrous scaffolds [11]. In addition, neural bio-
electrical properties and synaptic activities can bemodu-
lated by material–neuron interactions, when substrates
are also characterized by a high level of electrical con-
ductivity. Hence, the embedding of conductive nano-
materials in neural interfaces has also been found to
promote efficient connections among cells and preserve
normal or even enhanced neuronal activities, after stem
cell differentiation. Among these materials, carbon-
based nanomaterials such as graphene films [12], three-
dimensional graphene foams [13], reduced graphene
oxide with poly(3,4-ethylenedioxythiophene) (PEDOT)
[14], carbon nanotubes (CNTs) [15], CNT ropes [16],
multi-walled CNTs (MWCNTs) [17] and MWCNTs
with a PEGDA polymer [18] have been explored for
these applications,with promising outcomes.

Bio-electricity mostly regulates cell behaviours
and biological functions (cell adhesion, proliferation
and migration) during tissue regeneration. The appli-
cation of an electrical field can support this process
in in vitro applications [19]. In this context, neural
engineering aims to study neuronal networks using
electrical stimulation (ES) impulses through the devel-
opment of an interface between electronic devices and
living neural tissue [20]. ES is indeed an efficient
approach to stimulate and record the activities of
neural cells [21]. An applied electric field (or an electric
current) can influence the direction and proliferation
of neurite growth [2] if the cell membrane achieves
certain action potentials (rest potential∼−70 mV),
that would cause the activation of ionic channels.

Spira et al [22] described the commonest meth-
odologies for ES, such as (i) intracellular stimulation
and signal recording by means of a sharp needle-
shaped electrode (invasive technique), (ii) extra-
cellular stimulation and signal recording via substrate-
integrated micro-electrode arrays (MEAs), and (iii) ES
followed by optical imaging of extrinsic fluorescent
indicators. More specifically, MEAs are the current
technology for long-term studies of electro-
physiological phenomena. However, they still do not
offer the same capability for correct fluid exchange
among the cells or a three-dimensional surface area for
in vitro cultures. Moreover, current solutions are
mostly available on rigid substrates (Young’smodulus,
E, of the order of GPa), which do not represent the

ideal cellular soft environment for unaltered biological
activity (E of the neural biological carrier ideally
between 0.1 and 10 kPa) [23]. Instead, ES could
directly be applied to ECM-mimicking scaffolds, such
as electrospun conductive polyaniline/poly(ε-capro-
lactone)/gelatin nanofibres [24], with major benefits
but possibly lower recording accuracy.

In this scenario, printed electronics (PE) could be a
novel solution to merge tissue engineering and addi-
tive manufacturing for the generation of ES spatially
localized across a fabric, with possible recording of cel-
lular activity. There are potential applications for PE in
regenerative medicine for neuronal studies, and much
more. More specifically, printing of electronics is a set
of printing techniques specializing in PE circuits on
several substrates and for a wide range of applications.
Among these are nebulized jet-based techniques of the
direct writing nozzle-based category, a macro-area of
additive manufacturing. These have a competitive
advantage for the semiconductor industry, thanks to
the ease of designing and prototyping cost-effective
multi-material/multi-functional structures, without
material wastage or the requirement for masks at
micrometre or nanometre resolution [25]. Moreover,
a broad range of customized PEs, such as parts of light-
emitting diodes (LEDs) [26] and organic LEDs [27],
solar cells [28], sensors [29], antennas [30], transistors
[31], capacitors [32] and for applications in the biome-
dical field [33], have already been validated on various
planar and non-planar substrates, rigid and flexible
supports, textile and paper foils. [34, 35]. The key
advantages of nebulized jet manufacturing over other
jet-based techniques (e.g. ink-jet printing) are sum-
marized in the following points. (i) A broad range of
printable (nano-) inks [36], with viscosity from 1 up to
1000 mPa s and particle size <0.5 μm [25]. Typical
examples include nano-metal inks (Ag, Au, Cu, etc),
conductive polymer suspensions [e.g. PEDOT:poly-
styrene sulphonate (PSS), polypyrrole, etc], semi-
conductor, carbon-based and dielectric solutions (e.g.
epoxy, polyimide, etc) or biological substances (such
as collagen [37], bovine serum albumin protein, DNA
and enzymes [38]). (ii) Printability on various sub-
strates [glass, FR4, polydimethylsiloxane (PDMS),
thermoplastic polyurethane foils, textile, papers, etc],
including free-formed supports, thanks to the variable
stand-off distance (between 1–5 mm), i.e. the distance
between the tip of the print nozzle and the substrate.
(iii)High accuracy (feature sizes ranging from∼10μm
to a few mm and thin layer deposition starts from
∼100 nm [39]).

In this study, we investigate the printing of elec-
trical patterns, using a nebulized jet-based technique,
on the top of biocompatible electrospun-pyrolysed
polymeric scaffolds to generate a bio-electrical scaffold
for neural tissue engineering applications.More speci-
fically, in the next sections we report the fabrication of
fibrous scaffolds and the identification of suitable
parameters for printing conductive silver patterns on
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these substrates, along with biocompatible analyses
and circuit validation.

The fibrous scaffolds were electrospun using a
solution containing polyacrylonitrile (PAN), a versa-
tile biocompatible polymer obtained from the poly-
merization of acrylonitrile, which is conventionally
used in biomedical applications such as implantation,
drug delivery and dialysismembranes [40].

The embedding of conductive nanoparticles,
such as CNTs, was also analysed. CNTs have attracted
considerable attention in the past decade as material
candidates for nerve/neural tissue engineering appli-
cations [41, 42]. Despite concerns about their reported
relative cytotoxicity [41, 43, 44], each case has to be
considered according to the CNT concentration, size,
shape and direction in the solution, along with any
bio-functionalization and post-fabrication treatments
[44, 45]. CNTs usually show high electrical con-
ductivity (104 S cm−2), excellent mechanical proper-
ties [45, 46] and structural and chemical (surface
functionalization) enhancements with their incor-
poration into polymers and hydrogel scaffolds
[18, 42, 45], and morphological affinity to neurites
[41, 47]. Various studies have revealed an increase in
adhesion, proliferation and increase in neural activity,
such as successful control the characteristics of neurite
outgrowth via surface manipulation of CNTs [46] or
improving neural signal transfer while supporting
dendrite elongation and cell adhesion [15]. In part-
icular, among the different techniques for manipulat-
ing CNTs, electrospinning emerges as a powerful
method to disperse and align functionalized CNTs
[45, 48, 49].

According to the main objective of the paper
(namely, a feasibility study on combining the fields of
PE and neural tissue engineering), a commonly used
PE ink, specifically customized for nebulized jet print-
ing techniques, was selected. It is a commercial silver
nanoparticle (AgNP; Øparticle size ∼100 nm) ink; AgNP
suspensions are, in fact, themost widely adopted engi-
neered inks in PE, due to their high conductivity and
printing versatility [50].

It is widely reported in the literature that the biolo-
gical activity of AgNPs induces cytotoxicity in a com-
plex multi-factorial environment, which is dependent
on dose, size, shape, surface coating [51], agglomera-
tion, dissolution rate and time [52]. Specifically, in bio-
logical solutions, the AgNP surface can be mainly
oxidized byO2, activating the release ofAg

+ ions, which
can interact with nucleic acids, lipidmolecules and pro-
teins, causing oxidative stress and damaging several cel-
lular components [53]. On the other hand, to the best of
our knowledge, most of the studies on in vitro cell cul-
tures, report cytotoxicity of AgNP powders at various
concentrations [51, 54–61], with a Øavg particle size ≪
100 nm, i.e. much smaller than the AgNP ink suspen-
sion used in our study (Øavg,particle size∼100 nm).
Accordingly, Johnston et al [57] reported that smaller
particles have a higher toxic potential than bigger

ones on an equal-mass basis. Furthermore, Alon et al
found minimum toxic levels of sputtered Ag when
Øavg,particle size∼120 nm, most likely due to surface
functionalization and a homogeneous production pro-
cess for Ag-sputtered layers [62]. Therefore, this paper
does not just report on a novel technique to realize bio-
electrical scaffolds but also provides new insights con-
cerning the use of conductive nanoparticles, such as
CNTs andAgNPs, to enhance neural activity.

2.Materials andmethods

2.1. Substrate production and characterization
The scaffolds, on the top of which conductive patterns
were printed, are composed of carbon fibres derived
from the precursor PAN. CNTs were also embedded
in the electrospinning solution, and two substrates,
later referred to as PAN and PAN+CNT, were
produced in order to investigate the effects of includ-
ing nano-conductive particles on the final product of
polymerization. PAN and PAN+CNT substrates
were obtained by electrospinning of a solution of
8 wt% PAN (150 000 g mol−1) dissolved in dimethyl-
formamide (DMF). The solutionwas stirred for 48 h at
30 °C. The PAN+CNT solution was made by dissol-
ving 1 wt% CNTs in DMF (by sonication for 1 h at
35 °C) and adding PAN in a second step. Subsequently,
both materials were electrospun using a 5 ml syringe
with a 21-gauge needle on a flat collector composed of
one plate of copper, covered by an aluminium foil.
Afterwards, the fibres were subjected to thermal
stabilization at 280 °C for 6 h and to pyrolysis up to
1050 °C in a controlled atmosphere (table 1, figure 1)
[63]. Thefinalfibrousmatswere dark coloured, brittle,
thinfilms.

2.1.1.Morphological characterization
Characterization of the fibres was performed using
a scanning electron microscope (SEM) under ambient
conditions (23 °C, 50% relative humidity) and
20.00 kV vacuum. Measurements of the average
diameter of the fibres were calculated using ImageJ
software. For both the PAN and PAN+CNT sam-
ples, 120 measurements in different and random
spatial regionswere taken.

The electron diffraction pattern was analysed
using a transmission electron microscope (TEM) to

Table 1.Parameters for the electrospinning process.

Parameter Value

Syringe pump 5mlwith 21-gauge needle

DC voltage 10 kV

Injection flow rate 1ml h−1

Needle tip–collector

distance

21mm

Type of collector Plate of copper covered by an

aluminium foil
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detect the degree of graphitization in the nanofibres.
In addition, the average crystallite thickness (Lc) was
measured from the distance between the layers by the
fringes.

The material thickness was measured using a
Schut micrometer (accuracy ±2 μm) under ambient
conditions.

2.1.2. Electrical properties
A four-point measurement was used to detect the
sheet resistance of the materials in clean-room condi-
tions (Veeco Instruments Inc., Four Point Probe,
model FPP-100). For each material, 15 repetitions on
two different samples were recorded.

2.2. Ink
In this study, a commercial AgNP solution ink SI-AJ
20X (supplied by AGFA) was used. Table 2 reports the
main properties of the ink. The interaction forces
between ink particles and substrates (PAN,
PAN+CNT and glass) were studied using a sessile
drop on a Contact Angle System OCA 15plus for
wettability tests under ambient conditions. This is a
common test in printing techniques to check the
substrate–ink interaction and the adhesion to a part-
icular substrate. A sessile drop of 2 μl was deposited on
the substrates via a Nordson 7018339 straight, 25-
gauge, 1.5 inch long red dispensing needle. Measure-
ments were recorded automatically and fitted by the

software from the starting point when the drop was
deposited on the substrate until the measurement was
stable (∼5 s).

2.3. Printing process
2.3.1. Nebula 5X-100 s
The printing process was conducted on a Nebula 5X-
100 s, a five-axis home-made nebulized jet-based
printer, designed and manufactured at the Advanced
Manufacturing Laboratory (AML), CampusDeNayer,
KU Leuven, Belgium (figure 2(A)). Themachine offers
a printing speed in the range of 0–200 mmmin−1, a
stand-off distance of 1–5 mm and a positional accur-
acy of±10 μmon the z-axis and±20 μmon the x and
y axes. Typically, conical-shaped nozzles are mounted
on the deposition head to ensure jet focusing. In this
study, 10 cm3 Nordson EFD Luer lock nozzles
(Ø = 250 μm and Ø = 610 μm, length 31.6 mm) are
employed. The Nebula 5X-100 s is equipped with a
pneumatic atomizer for the creation of an aerosol flow
at controlled air pressure in the range of 0–5 bar. The
aerosol flow subsequently goes in a virtual impactor,
which is used to filter the accelerating gas to get a
focused beam. A schematic view of the printing
process is given in figure 2(B). For a reliable process,
the minimum ink level required in the atomizer is
∼3 ml and the printed line resolution is in the range of
100–300 μm, depending on the particular ink–sub-
strate combination. The printer has been validated on
various flat and curved substrates using different
silver inks.

2.3.2. Experimental printingmethodology
Various experimental methodologies were used to
identify suitable printing parameters for specific ink–
substrate combinations. Experiments were first con-
ducted on glass substrates (from VWR) as a positive
control, and then transferred to PAN mats. The glass
experiments consisted of a first screening session, of
type 2k (k>0) full factorial design (two levels, k=4
factors, five repetitions), followed by a greedy algo-
rithm investigation within an adapted process win-
dow. The following factors were investigated in the
screening session: nozzle diameter Ø (μm), stand-off
distance z (mm), control pressure p (bar), print speed s
(mmmin−1) and number of printed layers n as shown
in table 3.

Based on the results obtained, z and pwere further
investigated in a greedy algorithm investigation.
Accordingly, an additional greedy algorithm invest-
igation was conducted on the PAN substrates to fine-
tune the best practice combination obtained on glass.
Due to the higher wettability (see section 3.2 and
figure 7) and the fragility of PAN and PAN+CNTs,
40 layers were printed instead of 10 and pwas kept low.
Finally, a validation test composed of five repetitions
was executed for each best practice parameter combi-
nation identified on glass and carbon-fibre-based

Figure 1.The (pre)-carbonization phase in the pyrolysis
process: afirst pre-carbonization phase from room temper-
ature at 20 °C,with an increase of 4 °C min−1 for 1 h,
followed by another hour at 300 °C. Subsequently, a second
increase of 2.5 °C min−1 for 5 h, followed by the carboniza-
tion phase at 1050 °C for 1 h. Finally, a cooling process from
1050 °C to 20 °Cover a period of 3 h.

Table 2.Properties of the SI-AJ 20X ink. Formore details see
the ink datasheet [64].

Feature Description

Printing process Optimized for aerosol jet® printing

Functionalmaterial 19.0wt% silver

Viscosity 7.1mPa s

Ave. particle size 100 nm

Appearance Dark-grey colour
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substrates. The samples were in the form of printed
lines 10mm long. After printing, thermal curing (180°
for 1 h in a Heraeus oven) was applied in order to
reach the desired conductivity, due to evaporation of
the ink solvent and sintering of the AgNPs. Table 3 lists
the experimental conditions selected for each test
campaign.

The quality of the printed line, q, was chosen as the
response of interest. In PE, a well-defined track is
required to ensure proper electrical transmission, more
specifically depending on line density, straightness of

the edge line and the amount of overspray (OS). TheOS
is here defined as the scattered material deposited, in
the form of drops or streams, next to the line edges. For
quantification purposes, we chose as the explicit value
of the OS (l2), the difference between the line width (l)
and the linewidth including theOS (l1) (figure 3). Char-
acterization was conducted by optical microscopy
(Hirox KH−8700). The printed lines were finally
ranked from 1 (worst) to 5 (ideal), according to the
guidelines given in figure 4, and the parameter combi-
nations leading to q �4 were further validated and

Figure 2.Nebula 5X-100 s printer (A) and schematic overview of the printing process (B): machine and tools, details of the atomizer
(1) and the print head (2). The aerosolized particles flow through the printing process using a pneumatic atomizer.

Figure 3.Phenomenon of overspray in a printed line: l2=l−l1.

Table 3.Parameter setting for investigation of the printing process on glass, PANand PAN+CNT substrates under ambient
conditions (23 °C, 50% relative humidity) .

Parameter

Full factorial design

screening 2k (k>0) Greedy algorithm investigation

Glass substrate Glass substrate PAN, PAN+CNT substrates

Nozzle diameter, Ø (μm) 250 610 250 610 250 610

Stand-off distance, z (mm) 0.7–2 0.8–2.5 1�z�5a 0.5�z�2a 1�z�3a 1.5–1.75

Control pressure, p (bar) 1–2.5 1–2.5 1�p�2a 1�p�1.75a 1.25�p�2a 1.25–1.50

Printing speed, s (mmmin−1) 50–150 50–150 50 50�s�150 30–50–100 50

No. of layers 5–10 5–10 10 10 40 40

Ink SI-AJ20X

a With an increase of 0.25 for each value tested.
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repeated (five times). The electrical resistance R (Ω) of
the best printed samples was also recorded, using a two-
point probe method with a Digital Voltmeter 3456 A
(HP)ona printed patternof 10mm×0.3mm.

2.4. Biocompatibility and cellular adhesion
In the following paragraphs, cell viability assays on
human fibroblasts (HFs) and human-induced pluri-
potent stem cell (iPSC)-derived neural stem cells
(NSCs) at different time points are described.

2.4.1. Cell viability assay onHFs up to 48 h
Cell culture tests were performed to evaluate the effects
of the AgNP (Øavg,particle size∼100 nm) ink SI-AJ20X
ink, PAN+CNT mats and printed silver on the
fibrous network (PAN+CNTs + Ag) on cellular
viability and proliferation. In particular, biocompat-
ibility was first verified on HFs (BJ cell line ATCC®

CRL-2522™) at a single time point of 48 h.
SI-AJ20X ink. Three samples of silver SI-AJ20X ink

(pure ink, not aerosolized) were painted on glass cov-
erslips and subjected to post-processing thermal cur-
ing (180° for 1 h in a Heraeus oven). Before cell
seeding (24-well plate) all the samples were washed

with three times with phosphate-buffered saline (PBS)
and sterilized in an autoclave.

PAN+CNTs. Three rectangular samples of
PAN+CNTs (5 mm×10 mm) were washed with
PBS for 3 h and sterilized in an autoclave. Subse-
quently, all samples were placed directly into a 48-well
plate.

PAN+CNTs + Ag. Six rectangular samples of
PAN+CNTs (5 mm×5 mm) with 10 printed silver
lines were analysed at each point. The printing para-
meters were as in table 5 for PAN+CNT samples
(Ønozzle=610 μm, s=50 mmmin−1, z=1.5 mm,
p=1.25 bar). Specifically, three samples were printed
at n=40 layers and three at n=1 layer to highlight
the effect of the quantity of printed silver
(Øavg,particle size∼100 nm) on cell viability, as men-
tioned in the literature [51, 54–61]. The samples were
subjected to the same post-sintering process as for SI-
AJ20X ink (180° for 1 h in a Heraeus oven), although a
different ink–substrate wettability has to be con-
sidered. All samples were washed with PBS for 3 h and
sterilized in an autoclave before cell culture. Subse-
quently, all samples were placed directly into a 48-well
plate.

Figure 4.Characterization of line quality from1 to 5.
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Cell viability assay. HFs were cultured in Dulbec-
co’s modified Eagle’s medium (DMEM) with 10%
fetal bovine serum, 1% L-glutamine and 1% peni-
cillin/streptomycin (all Euroclone). Cells were main-
tained at 37 °C in a saturated humidity atmosphere
containing 5%CO2. A concentrated cell suspension of
2 × 105 cells cm−2 was deposited onto each support
and incubated for 30 min before the plate was filled
with a suitable volume of DMEM. The biocompat-
ibility was estimated after 48 h by measurement of
ATP, using the CellTiter-Glo 3D Cell Viability Assay
(Promega cat. no. G9681). This assay is a homo-
geneous method to detect the number of viable cells
based on quantification of ATP, which is a marker for
the presence of metabolically active cells. Cells were
lysed directly on the substrates according to themanu-
facturer’s instructions. An ATP standard curve (range
of 10 μM to 10 nM) was generated using the ATP dis-
odium salt (Promega cat. no. P1132) in order to com-
pare luminescence of samples with luminescence of a
standard determining the ATP concentration detec-
ted. Luminescence was measured using a Tecan
Infinite®M200multi-functionalmicroplate reader.

2.4.2. Cell viability assay for HFs and human-iPSC-
derivedNSCs up to 96 h
According to the results of the first study on HFs at
48 h (see section 3.5), further ATP studies were
performed with HFs and human-iPSC-derived NSCs
on the final product on 24-well plates. The final
product is PAN+CNT substrates with 10 printed
silver lines at n=40 layers and the relative printing
parameters reported in table 5 (Ønozzle=610 μm,
s=50 mmmin−1, z=1.5mm, p=1.25 bar), subse-
quently sintered at 180° for 1 h in a Heraeus oven. All
samples were washed with PBS for 3 h and sterilized in
an autoclave before the cells were cultured. Biocom-
patibility was estimated after 24, 48 and 96 h (three
samples for each point), bymeasurement of ATPusing
the same CellTiter-Glo 3D Cell Viability Assay (Pro-
mega cat. no. G9681) as described in the previous
subsection.

A parallel experiment on ATP measurement with
the same Promega assay kit was performed on human-
iPSC-derived NSCs and the final product after 24, 48
and 96 h (two samples for each point). Human-iPSC
lines reprogrammed and characterized in our labora-
tory were differentiated into NSCs, using the protocol
reported by Ferraro et al [65]. Specifically, a Matrigel
coating was applied to the substrates for 1 h at 37 °C
before cell seeding. A concentrated cell suspension
(2×105 cells cm−2 ) was deposited onto each sample
and incubated for 20 min before filling with an appro-
priate volume ofNeural ExpansionMedium.

2.4.3. Immunofluorescence assay
In addition to the quantitative analyses, immunofluor-
escence assays were performed to observe the cellular

morphology (nuclei and cytoskeleton). Based on
previous results, tests were implemented on AgNP
(Øavg,particle size∼100 nm) SI-AJ20X ink and
PAN+CNT substrates up to 5 days.

2.4.4. Silver SI-AJ20X ink
Immunofluorescence was performed to study the
effects of silver SI-AJ20X ink on glass with respect to
cellular adhesion and morphology. Specifically, three
samples of silver SI-AJ20X ink were painted on glass
coverslips and subjected to post-processing thermal
curing (180 °C for 1 h in a Heraeus oven) to evaporate
the solvent. All the specimens were washed with PBS
three times and sterilized in an autoclave before cell
seeding. A concentrated HF cell suspension (BJ cell
line ATCC® CRL-2522™) at 5×104 cells cm–2 was
deposited onto each support and incubated for 30 min
before filling the plate with a suitable volume of
DMEM. After 5 days in culture, cells were fixed using
the Fix&Perm Sample Kit® (SIC) for 30 min (15 min
fixation and 15 min permeabilization), incubated with
blocking solution (iBindTM5XBuffer, Invitrogen) for
45 min, and stained with Phalloidin (Sigma Aldrich),
whichmarks the cytoskeletal components of cells. Cell
nuclei were then counterstained with Hoechst 33342
for 5 min to highlight the cellular nuclei of living cells.
The samples were mounted onto glass slides and
observed under an inverted fluorescence microscope
(Olympus IX70 invertedmicroscope); the images were
analysed with Image-Pro Plus software v.7.0 (Media
Cybernetics).

2.4.5. Adhesion of NSCs on the carbonized substrates
Human-iPSC-derived NSCs [65, 66] were used to
perform cell compatibility tests on three samples of
PAN+CNT carbonized fibres. The substrates were
positioned in a 24-well plate then washed with PBS
and sterilized in an autoclave. A Matrigel (Thermo-
Fisher Scientific) coating was applied for 1 h at 37 °C.
NSCs were passed through a 100 μm strainer (Fisher
Scientific) to obtain a single cell suspension and plated
at 5×104 cells cm−2. A concentrated cell suspension
was deposited on the samples and incubated for
20 min before filling the 24-well plate with the
appropriate volume of StemPro NSC SFM (Thermo-
Fisher Scientific). Cells were maintained at 37 °C in an
atmosphere containing 5% CO2. After 5 days in
culture, the cells were fixed and permeabilized using
Fix&Perm-Reagent kit (SIC), blocked for 45 min with
iBindTMBuffer solution (Invitrogen) and stainedwith
Phalloidin, specific for the cytoskeletal component of
the cells. Cell nuclei were counterstainedwithHoechst
33342 to show the living cells. Samples were observed
with an inverted fluorescence microscope (Olym-
pus IX70).
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3. Results and discussion

3.1. Substrate characterization
Morphological characterization of PAN and
PAN+CNTs (diameter of fibres, density of the
fibrous networks, orientation of fibres and presence of
beads in the pattern) was carried out. Figure 5 shows
SEM images for both PAN and PAN+CNTs at two
levels of magnification. Both the substrates present an
homogeneous distribution of randomly oriented
fibres.

PAN samples have a higher density of fibres than
PAN+CNTs. PAN fibres seem more tangled and
with a higher concentration of round beads. The for-
mation of some beadsmight be related to poor disper-
sion of the nanoparticles and incomplete solvent
evaporation: this suggests that, although CNTs
seemed to be well dispersed by sonication in DMF,
some of the long nanotubes were entangled with each
other. Further electrospinning parameter optim-
ization will be performed to avoid these defects.
The average thickness of the PAN+CNT material
is 190 μm (σ2=0.02), compared with the 310 μm
(σ2=0.06) for PAN. The TEM images exhibit the
differences in the fibre surfaces (figure 6): the
PAN+CNT fibres have amulti-layered wall of CNTs
in the shell region (figure 6(a)). A distinction between
core and shell regions is detected close to the fibre sur-
face. Here it is possible to distinguish the orientation
of the fringe in the shell region, which indicates good
alignment of the CNTs along the fibre axis. A higher

grade of graphitization in PAN+CNT than in PAN
fibres is also detected (figure 6(b)): the electron diffrac-
tion pattern shows concentric circles formed from
multiple sets of six-fold symmetrical spots, which are
an index of the grade of graphitization in the fibrous
network. This derives from themulti-layered distribu-
tion of sp2 hybridized carbon planes (fromCNTs and/
or grown carbon crystals) which are randomly orien-
tedwith respect to the incident electron beam.

Measurement of the resistivity ρ shows that PAN
and PAN+CNTs are slightly conductive in the same
range of ∼2Ω cm. This result can be interpreted from
a morphological point of view: even if the embedded
CNTs have increased the conductivity of the fibres,
their less ordered orientation decreased the propaga-
tion of electrical current in the matrix. Table 4 reports
a summary of the material properties which have been
characterized.

3.2. Ink–substrate interaction
High wettability of silver ink is revealed for all the
samples, showing good interaction between the ink
and the substrates. This phenomenon usually favours
a high quality of printed lines for a given best practice
printing approach. Figure 7 reports the contact angle
measurements on each substrate. Specifically, both
PAN and PAN+CNTs reveal the highest wettability,
most likely due to their mat structure, and conse-
quently higher absorption.

Figure 5.Morphological characterization of the substrate: SEM images of PAN (5000×) (a), 10 000× (c) and SEM images of
PAN+CNTs atmagnification 5000× (b) and 10 00o× (d). Electron high tension (EHT)= 20 000 kV.
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3.3. Printing experiment
3.3.1. Glass substrate and silver ink
Figure 8 shows the analyses of the results obtained on
glass for a full factorial screening design on both
nozzles.

With the use of a 250 μm nozzle (figure 8, Pareto
Chart), the most significant parameters are, in order:
the printing speed, s, the interaction between the con-
trol pressure and printing speed, ps, and the number of
layers, n. In addition, the main effect plot shows a
small increase in line quality when s assumes low
values and the number of deposited layers, n, increa-
ses, this latter being directly proportional to the line
density. Instead, the pressure, p, is revealed to be the
most significant parameter when using a 610 μmnoz-
zle. The effect of pressure is also opposite when com-
paring the results obtained with the two nozzle
diameters. This effect can be explained by referring to
Bernoulli’s principle, according to which the kine-
matic status of a fluid is inversely proportional to the
cross-sectional area of the vessel through which the
fluid isflowing.

On average, the results are assessed as being of
quality 2, with small variations with changes of the
input parameters (figure 8, Main Effects). The

regression analyses for a 250 μm and a 610 μm nozzle
give, respectively, R2

250μm 32.10% and R2
610μm 26.21%,

hence indicating that, in the selected window, the
investigated parameters are only partially responsible
for the results obtained.

Accordingly, a greedy algorithm was performed in
an adapted process window for further parameter
investigation. The experimental campaign was specifi-
cally applied on p and z (off-set distance, introduced
based on the previous experience acquired), by gradu-
ally increasing the parameter values, one by one, and
by performing the printable combinations only. The p
values were intentionally kept on the lower side to
ensure more robust results. Figure 9 shows the con-
tour plot for the line quality with variation of off-set
and pressure. The graph is the result of experimental
data obtained for given combinations of p and z and
interpolated datawhen not present.

Non-linear behaviours could also be detected, as
intervals of four or more levels were investigated. The
quality results are promising (up to level four), but
they are still fluctuating without revealing a particular
trend. The contour plot does not reveal the presence of
a global optimum, but only local best parameter
combinations.

Figure 6. Influence of CNTs embedded in PAN samples. TheTEM images show themicro-structure of PAN+CNT fibres, with a
distinction between core (C1) and shell (C2) regions (A). Grade of graphitization (B) of CNTs embedded in PAN,with respect to the
PAN fibres (C).

Table 4.Material characterization. The table reports the values ofmorphological and electrical characterizations, respectively, for PANand
PAN+CNTmaterials.

Material property Mean (μ) or standard deviation (σ2) PAN PAN+CNT

Fibre diameter, d (μm) μ 0.29 0.27

σ2 0.05 0.05

Substrate thickness, t (mm) μ 0.31 0.19

σ2 0.06 0.02

Sheet resistance,σ (Ω ◻−1 orΩ) μ 67.1 102.6

σ2 9.5 21.3

Resistivity, ρ (Ω cm) μ 2.1 1.9

Crystallite thickness, L (nm) μ — 15.1

σ2 — 4.9
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In general, q�4 can only be obtained at low p and
z; instead, if z is higher than 0.75mm, the desired qual-
ity q�4 can be achieved with increasing p for a
250μmnozzle. For this reason, the best practice is cho-
sen as: s=50mmmin−1, z=3.5 mm, p=1.75 bar

and n=10 layers. Instead, a q �4 can be achieved
with low s and p and high z, or vice versa, for a 610 μm
nozzle. For this reason, the best practice is: s=
50mmmin−1, z=1.75 mm, p=1.25 bar and n=
10 layers. Those combinations of parameters will

Figure 8.Analysis of the experimental design on a glass substrate: full factorial screening on a 250μmand a 610μmnozzle,
respectively.

Figure 7.Contact anglemeasurement on PAN, PAN+CNTs and glass using the silver ink SI-AJ20X.
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eventually be repeated and further validated, as repor-
ted in section3.4.

3.3.2. PAN, PAN+CNT substrates and silver ink
According to the analysis developed on glass substrate,
a similar greedy algorithm investigation was applied to
PAN and PAN+CNT substrates. The experimental
analysis started with a 250 μmnozzle and focused on p
and z, by gradually increasing the parameter values of
0.25, one by one, and performing printable combina-
tions only. Figure 10 shows the contour plot for the
line quality obtained for given combinations of p and
z, with the use of a 250 μm nozzle on PAN substrate.
As for glass substrate, interpolation of the exper-
imental data shows non-linear behaviour. The same
range of quality line (up to level four) is detected with
local best parameter combinations but without a
specific trend. In general, q �4 can only be obtained
at low p and z; for this reason, the best practice is
chosen as: s=50 mmmin−1, z=1.75mm, p=1.25
bar and n=40 layers. A more restricted parameter
window was studied for a 610 μm nozzle. The
experiments were based on the previous results on
PAN and PAN+CNT substrates using a 250 μm

nozzle and on the analyses performed on glass
substrate using a 610 μmnozzle.With this knowledge,
q �4 is detected to be obtained again at low p and z;
the best practice is chosen as : s=50 mmmin−1,
z=1.5mm, p=1.25 bar and n=40 layers.

3.4. Validation test and best printing practices
Table 5 reports the best printing combinations
obtained for glass, PAN and PAN+CNT substrates,
respectively. Five repetitions for each combination of
parameters were conducted to validate the results. The
results were characterized with regard to line width,
OS and achieved electrical resistance. The quality of
the results was also cross-checked and confirmed to
have a value of at least 4, as in previous experiments.
No difference was detected in the best practice values
for both the nozzles on PAN and PAN+CNT
substrates because the two fibrous networks can be
considered as a similar substrate from the point of
view of the printing process. Specifically, a comparison
between the carbon-fibre substrates and the glass
substrate reveals that, for a 250 μm nozzle, a lower
pressure is required, which needs consequently a lower

Figure 9.Analysis of the experimental design on a glass substrate: greedy algorithm investigation on a 250μmand a 610μmnozzle,
respectively. Line quality goes from1 (blue) to 5 (yellow).

Figure 10.Greedy algorithm investigation for a 250μmnozzle PAN substrate. Line quality goes from1 (blue) to 5 (yellow).
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stand-off distance (according to the Bernoulli princi-
ple). This is because of the high fragility of the
substrates. On the other hand, the use of a 610 μm
nozzle requires for each substrate a low pressure equal
to p=1.25 bar. In this case, instead, the main
difference between glass and carbon-fibre-based sub-
strates is found in the off-set z: a lower z is set for PAN
and PAN+CNT substrates, due to the absorption of
aerosolized micro-droplets inside the fibrous mats. As
a consequence, a higher number of printed layers
(n=40), than that on glass (n=10), is also required.
This condition also explains the smaller values of line
width and OS with respect to the results obtained on
glass.

The overall analysis demonstrates the feasibility of
printing conductive lines on electrospun fibrous pat-
terns. The values of electrical resistance on glass and
PAN substrates are approximately in the range of 50Ω,
which is in line with the PE requirements. Instead,
PAN+CNT substrates exhibit higher electrical
resistance, due to the higher sheet resistance (see
table 4), which induces more significant signal disper-
sion. Hence, the morphology and conductivity of the
substrate influence the creation of efficient bio-
electrical systems. In addition, the results regarding
line width values are in line with their respective
Ønozzle size, even if parameter optimization based on
the relative stand-off distance can be performed. Spe-
cifically, although the micro-scale resolution of the
line width in terms of system performance cannot
reach that of industrial nebulized jet-based printers,
such as the Aerosol Jet® printers by Optomec (down
to 10 μm) [39] or Nanojet™ (NJ) printers by IDS
(down to 15 μm) [67], it is comparable from the point
of view of cost-effectiveness. This can open up possibi-
lities in a low-costmarket scenario.

3.5. Biocompatibility and cellular adhesion
Figure 11 reports ATP assay results (time point 48 h)
of HFs cultured on SI-20X ink droplets, PAN+CNT
samples and their combination, respectively. The
relative values of %ATP concentration of samples,

with respect to the corresponding control sample, are
shown in the graph, while ATP (μM) concentrations
are reported in the table. As a first observation,
PAN+CNT mats reveals the highest biocompatibil-
ity, while PAN+CNTs+ Ag at n=40 layers has the
lowest value. PAN+CNTs + Ag at n=1 layer and
silver ink painted on glass coverslips have intermediate
values.

Specifically, despite the presence of CNTs in the
fibrous network, PAN+CNT substrates are suffi-
ciently biocompatible with respect to the control sam-
ple. Besides, the existence of ‘beads’ in the electrospun
fibres, produced by incomplete evaporation of the sol-
vent in the solution, does not seem to have a consider-
able influence on cell viability and proliferation.

The results on PAN + CNT +Ag samples, with
regard to the variation of AgNP suspensions, also
reveal the toxicity of silver ink and its dose-
dependent nature. This is in accordance with the
complex relative nature of the biological activity of
AgNP powders, in a multi-factorial dose-, agglomera-
tion- and dissolution rate-dependent environment. In
addition, PAN+CNT+ Ag samples at n=40 layers
show lower %ATP concentrations than silver ink dro-
plets on glass coverslips. Thismay be explained by spe-
cific surface–cell interactions, caused by the different
deposition processes: nebulized jet-based printing and
painting, respectively. We observed in our experi-
ments that printed lines delaminate more easily on
glass that on the carbon-fibre substrates. Hence, we
assume that the nebulized jet-based printing process
can cause different AgNP particle agglomerations,
resulting in distinctive Ag+ ion release and cell interac-
tion. This effect will be analysed in future studies.

Figure 12 shows ATP (μM) concentrations (time
points 24, 48 and 96 h) of HFs and human-iPSC-
derived NSCs, cultured on PAN+CNT with printed
Ag substrates (10 lines at n=40 layers). Specifically,
HFs proliferation follows a positive growth trend on
the final product for the first time points, and a nega-
tive one visible at 96 h (figure 12(A)).

The intrinsic variability of the nebulized jet-based
process in terms of the quantity of silver deposited on

Table 5.Best practice printing parameters for glass, PAN and PAN+CNT substrates using silver ink SI-AJ20X, with the respective results
(margin of errorwith confidence level of 95%).

Inputs Glass substrate PAN PAN+CNTs

Ø (μm) 250 610 250 610 250 610

z (mm) 3.5 1.75 1.75 1.5 1.75 1.5

p (bar) 1.75 1.25 1.25 1.25 1.25 1.25

s (mm min−1) 50 50

n 10 40

Output

Linewidth, l
1
(μm) 392.9±12.2 592.4±47.1 74.1±7.9 386.9±33.9 84.±11.1 391.7±45.6

Overspray, l
2
(μm) 134.7±13.9 196.9±23.6 19.4±3.6 27.1±31.3 28.9±8.4 68.1±19.9

Electrical resistance,R (Ω) 53.4±2.2 43.7±0.7 54.1±5.5 61.5±0.6 127.6±14. 135.5±28.5
Quality (1–5) 4
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the substrate (as previous data confirmed) has an
influence on the toxicity of the different samples.
However, proliferation of human-iPSC-derived NSCs
follows a negative trend by 48 h (figure 12(B)), reach-
ing values approximately equal to zero. In this context,
it must be noted that the cells used are not primary
neurons. These results demonstrate the unfeasibility
of direct contact between commercial AgNP
(Øavg,particle size∼100 nm) ink commonly used in PE
and neural cells.

3.5.1. Immunofluorescence assay
Figure 13 reports immunofluorescence microscopy
images of HFs on a drop of SI-AJ20X silver ink and
iPSC-derivedNSCs onPAN+CNTcarbonizedfibres
in different regions of the substrate, after 5 days.
Specifically, the sintered droplets of silver ink can
tolerably sustain cell adhesion and survival, even if
HFs seem to suffer, as confirmed by the staining of
nuclei and the cytoskeleton (figure 13, top row). On
the other hand, immunofluorescence images of adhe-
sion of iPSC-derived NSCs on PAN+CNTs
(figure 13, bottom row) show that cells spread on the

available surface, confirming the recognition of the
substrate. Human-iPSC-derived NSCs colonize the
fibrous network as the cytoskeletal protrusions
are interconnected through the carbon fibres. These
promising results lead to the possibility of differentiat-
ing the stem cells into neurons on the pyrolysed
scaffolds to enhance the maturation of adult cells by
the application of morphological, mechanical and
electrical stimuli.

4. Application and future activities

A designed RC (resistance—capacitor) circuit for
standard printed electronics application, such as
LEDs, was printed on glass and PAN+CNT sub-
strates to test the feasibility of printing functional
conductive patterns and circuits, as shown infigure 14.
On a glass substrate, an electrical resistance of ∼130Ω
was measured across the rectangular pads (connecting
printed line width l1=606.8±33.1 μm, rectangular
area ∼3.4 mm2), indicated as 1 and 2 in figure 14(a).
On the same path, values of ∼480 Ω were instead

Figure 11.%ATP relative concentration ofHFs cultured onPAN+CNT substrates with different numbers of printed silver
substrates on a 48-well plate (as control) and on SI-AJ20X ink sintered droplets on coverslips on a 24-well plate (as control), evaluated
at a time point of 48 h.
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measured on PAN+CNTs (figures 14(b) and (d)),
validating the functionality of the printed circuit also
for high sheet resistance bio-conductive mat pads
(connecting printed line width l1=424.4±55.3 μm,
rectangular area∼3.6mm2).

These results represent a starting point for future
investigations on ES across scaffolds in culture med-
ium, such as the design of circuits with rectangular

biphasic pulse generators and no residual charges
[18, 68]. By means of a DC power supply, for instance,
ES can be achieved through establishment of an elec-
trical field, uniformly distributed on the external
membrane of the cells [69] and with specific voltages
in the range of 4.5–450mVmm−1.

Several methods have already been investigated in
the literature in order to overcome the toxicity of

Figure 12.ATP concentrations (μM) ofHFs (A) and human-iPSC-derivedNSCs (B) cultured on PAN+CNTwith printed Ag
substrates (10 lines, n=40 layers) and on a 48-well plate (as control), estimated at different time points (24 h, 48 h, and 96 h).
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AgNP solutions, for example surface coating [70, 71]
and silver encapsulation via a printed passivation
layer. Specifically, several chemicals can be applied as
surface coating agents to avoid direct interaction with
the biological system, preventing the oxidation of Ag+

ions. Citrate and polyvinylpyrrolidone can be used as
surface coating agents for AgNPs [51], but also PDMS,
polyimide [23] or parylene-C [71, 72], as passivation
and insulating (printed) layers. Therefore, considering
that direct contact between the biological system and

AgNP inks designed for printing of electronics is not
possible, due to high levels of toxicity, potential encap-
sulation via a surface coating or a printed layer will be
surely investigated in future studies.

5. Conclusion

An ideal neural scaffold will usually havemultiple cues
for axon guidance; these could be obtained by

Figure 13.Top row:fluorescencemicroscopy images ofHFs after 5 days on a drop of SI-AJ20X silver ink (Phalloidin, staining the
cytoskeleton, in green, nuclei in blue), with detailed images of the nuclei in proximity of the edge of the drop (A), and of the Phalloidin,
respectively on the drop (B) and at the edge of the drop (C). Bottom row: fluorescencemicroscopy images of iPSC-derivedNSCs on
PAN+CNTcarbonized fibres in different regions of the substrate after 5 days. The regionswere randomly selected to verify the
homogeneity of cells spreading on the surface.

Figure 14.Printing of a RC circuit on glass and PAN+CNT substrates. Printing parameters on glass (a), (c): nozzle 250μm
(s=50 mm min−1, z=3.5mm, p=1.75 bar, n=10 layers for conductive tracks and n=3 layers for components); nozzle 610
μm (s=150 mm min−1, z=0.8mm, p=1.5 bar, n=3 layers for battery placement). Printing parameters on PAN+CNTs (b),
(d): nozzle 250μm (s=50 mm min−1, z=3.5mm, p=1.75 bar, n=25 layers for conductive tracks, 21 for components and
battery placement).
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introducing conductive electrodes [2, 4]. The present
study investigates the feasibility of using printing of
electronics for bio-electrical neural tissue engineering
applications by means of a nebulized jet-based print-
ing process. More specifically, the study has con-
cerned: (i) production of biocompatible electrospun-
pyrolysed fibrous mats via the electrospinning of
neural cell cultures (PAN, mean fibre diameter
d=0.29 μm, sheet resistance ρμ=67.1Ω◻−1), with
the addition of embedded CNTs (PAN+CNTs,
mean fibre diameter d=0.27 μm, sheet resistance
ρμ=102.6 Ω◻−1); (ii) identification of the most
suitable combination of parameters for printing con-
ductive lines on these substrates; (iii) toxicity tests of
the selected substrates and ink; and (iv) printing of a
functional circuit for concept validation.

The results showed high wettability for ink–sub-
strate adhesion, allowing the possibility of printing
well-defined and functional patterns, without delami-
nation/desquamation in physiological solutions, and
with electrical resistances in the range of 50 Ω for both
glass and PAN substrates, and in the range of 130Ω for
PAN+CNTsubstrates for a best practice combination
of print parameters and sintering processes.

However, the cytotoxic effects of themost common
ink used inPE, such asAgNP (Øavg,particle size∼100nm)
solutions, on HFs and human-iPSC-derived NSCs via
ATP assay for three-dimensional cell cultures, suggest
the need to implement surface coating or encapsulation
of the circuit in order to increase cell viability. Future
studies will focus on this. On the other hand, the work
demonstrates the technological potential of applying PE
techniques to produce innovative bio-electrical scaf-
folds for drug discovery or neural ES for in vitromodels,
with enhancements of connection efficiency among
cells and substrates. In fact, the main advantage of the
nebulized jet-based printing technique is its versatility:
both planar and free-formed substrates, flexible or rigid
supports, textile and paper, can be investigated, even if
its application to biomaterials or biomimetic tissues is
still unusual. Based on the literature evidence, examples
in the field of tissue engineering [37, 71] have already
been demonstrated. Furthermore, the possibility of
printing with a broad selection of inks, which can bal-
ance biocompatibility and electrical conductivity (such
as PEDOT:PSS, collagen, carbon-based inks, etc), can
completely avoid the problems concerning potential
cytotoxic effects.

Future work will involve optimization of electro-
spinning parameters and the investigation of printing
with biocompatible inks for the design and validation
of conductive PE on tissues for neuronal stimulation
and related differentiation, but also axon guidance and
neurite outgrowth studies. Eventually, further study
on the potential production of three-dimensional
conductive scaffolds, already on-going on nanofibres
[3, 18], will be implemented using nozzle-based print-
ing techniques [33] in a multi-material/multi-func-
tional vision.
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