48 research outputs found

    Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: interaction between ABA and primary metabolism

    Get PDF
    Abscisic acid (ABA) controls plant development and regulates plant responses to environmental stresses. A role for ABA in sugar regulation of plant development has also been well documented although the molecular mechanisms connecting the hormone with sugar signal transduction pathways are not well understood. In this work it is shown that Arabidopsis thaliana mutants deficient in plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (gapcp1gapcp2) are ABA insensitive in growth, stomatal closure, and germination assays. The ABA levels of gapcp1gapcp2 were normal, suggesting that the ABA signal transduction pathway is impaired in the mutants. ABA modified gapcp1gapcp2 gene expression, but the mutant response to the hormone differed from that observed in wild-type plants. The gene expression of the transcription factor ABI4, involved in both sugar and ABA signalling, was altered in gapcp1gapcp2, suggesting that their ABA insensitivity is mediated, at least partially, through this transcriptional regulator. Serine supplementation was able partly to restore the ABA sensitivity of gapcp1gapcp2, indicating that amino acid homeostasis and/or serine metabolism may also be important determinants in the connections of ABA with primary metabolism. Overall, these studies provide new insights into the links between plant primary metabolism and ABA signalling, and demonstrate the importance of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in these interactions

    Overexpression of BvHb2, a Class 2 Non-Symbiotic Hemoglobin from Sugar Beet, Confers Drought-Induced Withering Resistance and Alters Iron Content in Tomato

    Full text link
    [EN] Drought stress is one of the major threats to agriculture and concomitantly to food production. Tomato is one of the most important industrial crops, but its tolerance to water scarcity is very low. Traditional plant breeding has a limited margin to minimize this water requirement. In order to design novel biotechnological approaches to cope with this problem, we have screened a plant cDNA library from the halotolerant crop sugar beet (Beta vulgaris L.) for genes able to confer drought/osmotic stress tolerance to the yeast model system upon overexpression. We have identified the gene that encodes BvHb2, a class 2 non-symbiotic hemoglobin, which is present as a single copy in the sugar beet genome, expressed mainly in leaves and regulated by light and abiotic stress. We have evaluated its biotechnological potential in the model plant Arabidopsis thaliana and found that BvHb2 is able to confer drought and osmotic stress tolerance. We also generated transgenic lines of tomato (Solanum lycopersicum) overexpressing BvHb2 and found that the resulting plants are more resistant to drought-induce withering. In addition, transgenic lines overexpressing BvHb2 exhibit increased levels of iron content in leaves. Here, we show that class 2 non-symbiotic plant hemoglobins are targets to generate novel biotechnological crops tolerant to abiotic stress. The fact that these proteins are conserved in plants opens the possibility for using Non-GMO approaches, such as classical breeding, molecular breeding, or novel breeding techniques to increase drought tolerance using this protein as a target.This project was funded by the project PAID-00-10 "Introduccion De Genes Relacionados Con La Tolerancia A Estres Hidrico Y Oxidativo En Distintos Materiales Que Presentan Caracteristicas Utiles Para Su Uso Como Patrones De Plantas Horticolas De Interes Agronomico". (Ref. 2726) from the Universitat Politecnica de Valencia.Gisbert Domenech, MC.; Timoneda, A.; Porcel, R.; Ros, R.; Mulet, JM. (2020). Overexpression of BvHb2, a Class 2 Non-Symbiotic Hemoglobin from Sugar Beet, Confers Drought-Induced Withering Resistance and Alters Iron Content in Tomato. Agronomy. 10(11):1-17. https://doi.org/10.3390/agronomy10111754S1171011Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. doi:10.1016/j.abb.2005.10.018Sinclair, T. R. (2011). Challenges in breeding for yield increase for drought. Trends in Plant Science, 16(6), 289-293. doi:10.1016/j.tplants.2011.02.008Burke, M., & Emerick, K. (2016). Adaptation to Climate Change: Evidence from US Agriculture. American Economic Journal: Economic Policy, 8(3), 106-140. doi:10.1257/pol.20130025Zaveri, E., Russ, J., & Damania, R. (2020). Rainfall anomalies are a significant driver of cropland expansion. Proceedings of the National Academy of Sciences, 117(19), 10225-10233. doi:10.1073/pnas.1910719117Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266-269. doi:10.1126/science.aaz7614Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28(1), 169-183. doi:10.1016/j.biotechadv.2009.11.005Romero, C., Bellés, J. M., Vayá, J. L., Serrano, R., & Culiáñez-Macià, F. A. (1997). Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta, 201(3), 293-297. doi:10.1007/s004250050069Xiao, B., Huang, Y., Tang, N., & Xiong, L. (2007). Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics, 115(1), 35-46. doi:10.1007/s00122-007-0538-9Van Camp, W. (2005). Yield enhancement genes: seeds for growth. Current Opinion in Biotechnology, 16(2), 147-153. doi:10.1016/j.copbio.2005.03.002Locascio, A., Andrés-Colás, N., Mulet, J. M., & Yenush, L. (2019). Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. International Journal of Molecular Sciences, 20(9), 2133. doi:10.3390/ijms20092133Mulet, J. M., Alemany, B., Ros, R., Calvete, J. J., & Serrano, R. (2004). Expression of a plant serine O-acetyltransferase inSaccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast, 21(4), 303-312. doi:10.1002/yea.1076Porcel, R., Bustamante, A., Ros, R., Serrano, R., & Mulet Salort, J. M. (2018). BvCOLD1: A novel aquaporin from sugar beet (Beta vulgarisL.) involved in boron homeostasis and abiotic stress. Plant, Cell & Environment, 41(12), 2844-2857. doi:10.1111/pce.13416Smagghe, B. J., Hoy, J. A., Percifield, R., Kundu, S., Hargrove, M. S., Sarath, G., … Appleby, C. A. (2009). Review: Correlations between oxygen affinity and sequence classifications of plant hemoglobins. Biopolymers, 91(12), 1083-1096. doi:10.1002/bip.21256Bogusz, D., Appleby, C. A., Landsmann, J., Dennis, E. S., Trinick, M. J., & Peacock, W. J. (1988). Functioning haemoglobin genes in non-nodulating plants. Nature, 331(6152), 178-180. doi:10.1038/331178a0Taylor, E. R., Nie, X. Z., MacGregor, A. W., & Hill, R. D. (1994). A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Molecular Biology, 24(6), 853-862. doi:10.1007/bf00014440Spyrakis, F., Bruno, S., Bidon-Chanal, A., Luque, F. J., Abbruzzetti, S., Viappiani, C., … Mozzarelli, A. (2011). Oxygen binding to Arabidopsis thaliana AHb2 nonsymbiotic hemoglobin: evidence for a role in oxygen transport. IUBMB Life, 63(5), 355-362. doi:10.1002/iub.470Gupta, K. J., Hebelstrup, K. H., Mur, L. A. J., & Igamberdiev, A. U. (2011). Plant hemoglobins: Important players at the crossroads between oxygen and nitric oxide. FEBS Letters, 585(24), 3843-3849. doi:10.1016/j.febslet.2011.10.036Trevaskis, B., Watts, R. A., Andersson, C. R., Llewellyn, D. J., Hargrove, M. S., Olson, J. S., … Peacock, W. J. (1997). Two hemoglobin genes in Arabidopsis thaliana: The evolutionary origins of leghemoglobins. Proceedings of the National Academy of Sciences, 94(22), 12230-12234. doi:10.1073/pnas.94.22.12230Hill, R. D. (2012). Non-symbiotic haemoglobins—What’s happening beyond nitric oxide scavenging? AoB PLANTS, 2012. doi:10.1093/aobpla/pls004Hunt, P. W., Klok, E. J., Trevaskis, B., Watts, R. A., Ellis, M. H., Peacock, W. J., & Dennis, E. S. (2002). Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 99(26), 17197-17202. doi:10.1073/pnas.212648799Yang, L.-X., Wang, R.-Y., Ren, F., Liu, J., Cheng, J., & Lu, Y.-T. (2005). AtGLB1 Enhances the Tolerance of Arabidopsis to Hydrogen Peroxide Stress. Plant and Cell Physiology, 46(8), 1309-1316. doi:10.1093/pcp/pci140Hebelstrup, K. H., & Jensen, E. Ø. (2007). Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta, 227(4), 917-927. doi:10.1007/s00425-007-0667-zWang, Y., Elhiti, M., Hebelstrup, K. H., Hill, R. D., & Stasolla, C. (2011). Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis. Plant Physiology and Biochemistry, 49(10), 1108-1116. doi:10.1016/j.plaphy.2011.06.005Vigeolas, H., Hühn, D., & Geigenberger, P. (2011). Nonsymbiotic Hemoglobin-2 Leads to an Elevated Energy State and to a Combined Increase in Polyunsaturated Fatty Acids and Total Oil Content When Overexpressed in Developing Seeds of Transgenic Arabidopsis Plants. Plant Physiology, 155(3), 1435-1444. doi:10.1104/pp.110.166462Sainz, M., Pérez-Rontomé, C., Ramos, J., Mulet, J. M., James, E. K., Bhattacharjee, U., … Becana, M. (2013). Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. The Plant Journal, 76(5), 875-887. doi:10.1111/tpj.12340FAOSTAThttp://www.fao.org/faostat/es/#homeSánchez-Rodríguez, E., Rubio-Wilhelmi, Mªm., Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A., … Ruiz, J. M. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178(1), 30-40. doi:10.1016/j.plantsci.2009.10.001Gur, A., & Zamir, D. (2004). Unused Natural Variation Can Lift Yield Barriers in Plant Breeding. PLoS Biology, 2(10), e245. doi:10.1371/journal.pbio.0020245McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R., & Fraley, R. (1986). Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Reports, 5(2), 81-84. doi:10.1007/bf00269239Gisbert, C., Rus, A. M., Boları́n, M. C., López-Coronado, J. M., Arrillaga, I., Montesinos, C., … Moreno, V. (2000). The Yeast HAL1 Gene Improves Salt Tolerance of Transgenic Tomato. Plant Physiology, 123(1), 393-402. doi:10.1104/pp.123.1.393Römer, S., Fraser, P. D., Kiano, J. W., Shipton, C. A., Misawa, N., Schuch, W., & Bramley, P. M. (2000). Elevation of the provitamin A content of transgenic tomato plants. Nature Biotechnology, 18(6), 666-669. doi:10.1038/76523Muir, S. R., Collins, G. J., Robinson, S., Hughes, S., Bovy, A., Ric De Vos, C. H., … Verhoeyen, M. E. (2001). Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology, 19(5), 470-474. doi:10.1038/88150Schijlen, E., Ric de Vos, C. H., Jonker, H., van den Broeck, H., Molthoff, J., van Tunen, A., … Bovy, A. (2006). Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnology Journal, 4(4), 433-444. doi:10.1111/j.1467-7652.2006.00192.xFischhoff, D. A., Bowdish, K. S., Perlak, F. J., Marrone, P. G., McCormick, S. M., Niedermeyer, J. G., … Fraley, R. T. (1987). Insect Tolerant Transgenic Tomato Plants. Nature Biotechnology, 5(8), 807-813. doi:10.1038/nbt0887-807KIM, J. W. (1994). Disease Resistance in Tobacco and Tomato Plants Transformed with the Tomato Spotted Wilt Virus Nucleocapsid Gene. Plant Disease, 78(6), 615. doi:10.1094/pd-78-0615Fillatti, J. J., Kiser, J., Rose, R., & Comai, L. (1987). Efficient Transfer of a Glyphosate Tolerance Gene into Tomato Using a Binary Agrobacterium Tumefaciens Vector. Nature Biotechnology, 5(7), 726-730. doi:10.1038/nbt0787-726Z.-Q., Z., F.-Q., C., Y.-X., L., & G.-X., J. (2002). Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Reports, 21(2), 141-146. doi:10.1007/s00299-002-0489-1Roy, R., Purty, R. S., Agrawal, V., & Gupta, S. C. (2005). Transformation of tomato cultivar ‘Pusa Ruby’ with bspA gene from Populus tremula for drought tolerance. Plant Cell, Tissue and Organ Culture, 84(1), 56-68. doi:10.1007/s11240-005-9000-3Sheehy, R. E., Kramer, M., & Hiatt, W. R. (1988). Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proceedings of the National Academy of Sciences, 85(23), 8805-8809. doi:10.1073/pnas.85.23.8805Klee, H. J. (1993). Ripening Physiology of Fruit from Transgenic Tomato (Lycopersicon esculentum) Plants with Reduced Ethylene Synthesis. Plant Physiology, 102(3), 911-916. doi:10.1104/pp.102.3.911Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F., & Kishore, G. M. (1991). Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. The Plant Cell, 3(11), 1187-1193. doi:10.1105/tpc.3.11.1187Arrillaga, I., Gil-Mascarell, R., Gisbert, C., Sales, E., Montesinos, C., Serrano, R., & Moreno, V. (1998). Expression of the yeast HAL2 gene in tomato increases the in vitro salt tolerance of transgenic progenies. Plant Science, 136(2), 219-226. doi:10.1016/s0168-9452(98)00122-8García-Abellan, J. O., Egea, I., Pineda, B., Sanchez-Bel, P., Belver, A., Garcia-Sogo, B., … Bolarin, M. C. (2014). Heterologous expression of the yeastHAL5gene in tomato enhances salt tolerance by reducing shoot Na+accumulation in the long term. Physiologia Plantarum, 152(4), 700-713. doi:10.1111/ppl.12217Safdar, N., Yasmeen, A., & Mirza, B. (2010). An insight into functional genomics of transgenic lines of tomato cv Rio Grande harbouring yeast halotolerance genes. Plant Biology, 13(4), 620-631. doi:10.1111/j.1438-8677.2010.00412.xSade, N., Vinocur, B. J., Diber, A., Shatil, A., Ronen, G., Nissan, H., … Moshelion, M. (2008). Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytologist, 181(3), 651-661. doi:10.1111/j.1469-8137.2008.02689.xGoel, D., Singh, A. K., Yadav, V., Babbar, S. B., & Bansal, K. C. (2010). Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma, 245(1-4), 133-141. doi:10.1007/s00709-010-0158-0Goel, D., Singh, A. K., Yadav, V., Babbar, S. B., Murata, N., & Bansal, K. C. (2011). Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. Journal of Plant Physiology, 168(11), 1286-1294. doi:10.1016/j.jplph.2011.01.010Mishra, K. B., Iannacone, R., Petrozza, A., Mishra, A., Armentano, N., La Vecchia, G., … Nedbal, L. (2012). Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Science, 182, 79-86. doi:10.1016/j.plantsci.2011.03.022Seo, Y. S., Choi, J. Y., Kim, S. J., Kim, E. Y., Shin, J. S., & Kim, W. T. (2012). Constitutive expression of CaRma1H1, a hot pepper ER-localized RING E3 ubiquitin ligase, increases tolerance to drought and salt stresses in transgenic tomato plants. Plant Cell Reports, 31(9), 1659-1665. doi:10.1007/s00299-012-1278-0Muñoz-Mayor, A., Pineda, B., Garcia-Abellán, J. O., Antón, T., Garcia-Sogo, B., Sanchez-Bel, P., … Bolarin, M. C. (2012). Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. Journal of Plant Physiology, 169(5), 459-468. doi:10.1016/j.jplph.2011.11.018Zhang, X., Zou, Z., Gong, P., Zhang, J., Ziaf, K., Li, H., … Ye, Z. (2010). Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnology Letters, 33(2), 403-409. doi:10.1007/s10529-010-0436-0Kanhonou, R., Serrano, R., & Ros Palau, R. (2001). Plant Molecular Biology, 47(5), 571-579. doi:10.1023/a:1012227913356Rosa Téllez, S., Kanhonou, R., Castellote Bellés, C., Serrano, R., Alepuz, P., & Ros, R. (2020). RNA-Binding Proteins as Targets to Improve Salt Stress Tolerance in Crops. Agronomy, 10(2), 250. doi:10.3390/agronomy10020250Brunelli, J. P., & Pall, M. L. (1993). A series of yeast shuttle vectors for expression of cDNAs and other DNA sequences. Yeast, 9(12), 1299-1308. doi:10.1002/yea.320091203Gietz, D., Jean, A. S., Woods, R. A., & Schiestl, R. H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research, 20(6), 1425-1425. doi:10.1093/nar/20.6.1425Hoeberichts, F. A., Perez-Valle, J., Montesinos, C., Mulet, J. M., Planes, M. D., Hueso, G., … Serrano, R. (2010). The role of K+ and H+ transport systems during glucose- and H2O2-induced cell death in Saccharomyces cerevisiae. Yeast, 27(9), 713-725. doi:10.1002/yea.1767Sayle, R. (1995). RASMOL: biomolecular graphics for all. Trends in Biochemical Sciences, 20(9), 374-376. doi:10.1016/s0968-0004(00)89080-5Hoy, J. A., & Hargrove, M. S. (2008). The structure and function of plant hemoglobins. Plant Physiology and Biochemistry, 46(3), 371-379. doi:10.1016/j.plaphy.2007.12.016Kay, R., Chan, A., Daly, M., & McPherson, J. (1987). Duplication of CaMV 35 S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science, 236(4806), 1299-1302. doi:10.1126/science.236.4806.1299Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262Bissoli, G., Niñoles, R., Fresquet, S., Palombieri, S., Bueso, E., Rubio, L., … Serrano, R. (2012). Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. The Plant Journal, 70(4), 704-716. doi:10.1111/j.1365-313x.2012.04921.xWitte, C.-P., No�l, L., Gielbert, J., Parker, J., & Romeis, T. (2004). Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Molecular Biology, 55(1), 135-147. doi:10.1007/s11103-004-0501-ySaporta, R., Bou, C., Frías, V., & Mulet, J. (2019). A Method for a Fast Evaluation of the Biostimulant Potential of Different Natural Extracts for Promoting Growth or Tolerance against Abiotic Stress. Agronomy, 9(3), 143. doi:10.3390/agronomy9030143Trujillo-Moya, C., & Gisbert, C. (2012). The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell, Tissue and Organ Culture (PCTOC), 111(1), 41-48. doi:10.1007/s11240-012-0168-zKoncz, C., & Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molecular and General Genetics MGG, 204(3), 383-396. doi:10.1007/bf00331014Ríos, G., Cabedo, M., Rull, B., Yenush, L., Serrano, R., & Mulet, J. M. (2013). Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Research, 13(1), 97-106. doi:10.1111/1567-1364.12013Citation for the Real Statistics Software or Website. Real Statistics Using Excelhttp://www.real-statistics.com/appendix/citation-real-statistics-software-website/Tukey, J. W. (1949). Comparing Individual Means in the Analysis of Variance. Biometrics, 5(2), 99. doi:10.2307/3001913Forment, J., Naranjo, M. A., Roldan, M., Serrano, R., & Vicente, O. (2002). Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. The Plant Journal, 30(5), 511-519. doi:10.1046/j.1365-313x.2002.01311.xHunt, P. W., Watts, R. A., Trevaskis, B., Llewelyn, D. J., Burnell, J., Dennis, E. S., & Peacock, W. J. (2001). Plant Molecular Biology, 47(5), 677-692. doi:10.1023/a:1012440926982Dohm, J. C., Minoche, A. E., Holtgräwe, D., Capella-Gutiérrez, S., Zakrzewski, F., Tafer, H., … Himmelbauer, H. (2013). The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 505(7484), 546-549. doi:10.1038/nature12817Hebelstrup, K. H., Igamberdiev, A. U., & Hill, R. D. (2007). Metabolic effects of hemoglobin gene expression in plants. Gene, 398(1-2), 86-93. doi:10.1016/j.gene.2007.01.039Hargrove, M. S., Brucker, E. A., Stec, B., Sarath, G., Arredondo-Peter, R., Klucas, R. V., … Phillips, G. N. (2000). Crystal structure of a nonsymbiotic plant hemoglobin. Structure, 8(9), 1005-1014. doi:10.1016/s0969-2126(00)00194-5Leiva-Eriksson, N., Pin, P. A., Kraft, T., Dohm, J. C., Minoche, A. E., Himmelbauer, H., & Bülow, L. (2014). Differential Expression Patterns of Non-Symbiotic Hemoglobins in Sugar Beet (Beta vulgaris ssp. vulgaris). Plant and Cell Physiology, 55(4), 834-844. doi:10.1093/pcp/pcu027NARANJO, M. A., FORMENT, J., ROLDAN, M., SERRANO, R., & VICENTE, O. (2006). Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell and Environment, 29(10), 1890-1900. doi:10.1111/j.1365-3040.2006.01565.xRausell, A., Kanhonou, R., Yenush, L., Serrano, R., & Ros, R. (2003). The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. The Plant Journal, 34(3), 257-267. doi:10.1046/j.1365-313x.2003.01719.xRus, A. M., Estañ, M. T., Gisbert, C., Garcia-Sogo, B., Serrano, R., Caro, M., … Bolarín, M. C. (2001). Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+ /Na+ selectivity under salt stress. Plant, Cell & Environment, 24(8), 875-880. doi:10.1046/j.1365-3040.2001.00719.xHoogewijs, D., Dewilde, S., Vierstraete, A., Moens, L., & Vinogradov, S. N. (2012). A Phylogenetic Analysis of the Globins in Fungi. PLoS ONE, 7(2), e31856. doi:10.1371/journal.pone.0031856Bai, X., Long, J., He, X., Yan, J., Chen, X., Tan, Y., … Xu, H. (2016). Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Scientific Reports, 6(1). doi:10.1038/srep26400Evangelou, E., Tsadilas, C., Tserlikakis, N., Tsitouras, A., & Kyritsis, A. (2016). Water Footprint of Industrial Tomato Cultivations in the Pinios River Basin: Soil Properties Interactions. Water, 8(11), 515. doi:10.3390/w8110515(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119Chen, Y., & Barak, P. (1982). Iron Nutrition of Plants in Calcareous Soils. Advances in Agronomy Volume 35, 217-240. doi:10.1016/s0065-2113(08)60326-0Dutt, M., Dhekney, S. A., Soriano, L., Kandel, R., & Grosser, J. W. (2014). Temporal and spatial control of gene expression in horticultural crops. Horticulture Research, 1(1). doi:10.1038/hortres.2014.4

    BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress

    Full text link
    [EN] In this report we have identified BvCOLD1, a novel aquaporin from sugar beet (Beta vulgaris) which is only conserved in the Chenopodioideae family. BvCOLD1 is expressed in all plant organs investigated and located in the endoplasmic reticulum. Transport experiments in yeast indicated that BvCOLD1 is able to transport glycerol and boron, the most limiting oligoelement for sugar beet cultivation. Overexpression of BvCOLD1 in Arabidopsis thaliana plants conferred tolerance to cold, to different abiotic stresses and the ability to grow under boron limiting conditions, therefore this novel aquaporin may be an important target to design new crops with enhanced boron homeostasis and abiotic stress tolerance.Ministerio de Economia y Competitividad, Grant/Award Number: BIO2016-77776-P; Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Grant/Award Number: AGL2013-47886-R; Direccion General Investigacion Cientifica; MINECO, Grant/Award Numbers: BIO2014-61826 and BIO2016-77776-P; Universitat Politecnica de Valencia, Grant/Award Number: PAID-06-10-1496Porcel, R.; Bustamante-González, AJ.; Ros, R.; Serrano Salom, R.; Mulet, JM. (2018). BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant Cell & Environment. 41(12):2844-2857. https://doi.org/10.1111/pce.13416284428574112Aroca, R., Amodeo, G., Fernández-Illescas, S., Herman, E. M., Chaumont, F., & Chrispeels, M. J. (2004). The Role of Aquaporins and Membrane Damage in Chilling and Hydrogen Peroxide Induced Changes in the Hydraulic Conductance of Maize Roots. Plant Physiology, 137(1), 341-353. doi:10.1104/pp.104.051045Biancardi, E. (2005). Genetics and Breeding of Sugar Beet. doi:10.1201/9781482280296Bienert, G. P., Møller, A. L. B., Kristiansen, K. A., Schulz, A., Møller, I. M., Schjoerring, J. K., & Jahn, T. P. (2006). Specific Aquaporins Facilitate the Diffusion of Hydrogen Peroxide across Membranes. Journal of Biological Chemistry, 282(2), 1183-1192. doi:10.1074/jbc.m603761200Bissoli, G., Niñoles, R., Fresquet, S., Palombieri, S., Bueso, E., Rubio, L., … Serrano, R. (2012). Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. The Plant Journal, 70(4), 704-716. doi:10.1111/j.1365-313x.2012.04921.xBoursiac, Y., Chen, S., Luu, D.-T., Sorieul, M., van den Dries, N., & Maurel, C. (2005). Early Effects of Salinity on Water Transport in Arabidopsis Roots. Molecular and Cellular Features of Aquaporin Expression. Plant Physiology, 139(2), 790-805. doi:10.1104/pp.105.065029Brown, P. H., Bellaloui, N., Wimmer, M. A., Bassil, E. S., Ruiz, J., Hu, H., … Römheld, V. (2002). Boron in Plant Biology. Plant Biology, 4(2), 205-223. doi:10.1055/s-2002-25740Camacho-Cristóbal, J. J., Rexach, J., & González-Fontes, A. (2008). Boron in Plants: Deficiency and Toxicity. Journal of Integrative Plant Biology, 50(10), 1247-1255. doi:10.1111/j.1744-7909.2008.00742.xCava, F., de Pedro, M. A., Blas-Galindo, E., Waldo, G. S., Westblade, L. F., & Berenguer, J. (2008). Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology. Environmental Microbiology, 10(3), 605-613. doi:10.1111/j.1462-2920.2007.01482.xDell, B., & Huang, L. (1997). Plant and Soil, 193(2), 103-120. doi:10.1023/a:1004264009230Dewar, A. M., May, M. J., Woiwod, I. P., Haylock, L. A., Champion, G. T., Garner, B. H., … Pidgeon, J. D. (2003). A novel approach to the use of genetically modified herbicide tolerant crops for environmental benefit. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1513), 335-340. doi:10.1098/rspb.2002.2248Dohm, J. C., Minoche, A. E., Holtgräwe, D., Capella-Gutiérrez, S., Zakrzewski, F., Tafer, H., … Himmelbauer, H. (2013). The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 505(7484), 546-549. doi:10.1038/nature12817Duncan, D. B. (1955). Multiple Range and Multiple F Tests. Biometrics, 11(1), 1. doi:10.2307/3001478Evans, E., & Messerschmidt, U. (2017). Review: Sugar beets as a substitute for grain for lactating dairy cattle. Journal of Animal Science and Biotechnology, 8(1). doi:10.1186/s40104-017-0154-8Food and Agriculture Organization of the United Nations 2015 World agricultural statistics = Statistiques agricoles mondiales = Estadísticas agricolas mundialesGietz, D., Jean, A. S., Woods, R. A., & Schiestl, R. H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research, 20(6), 1425-1425. doi:10.1093/nar/20.6.1425Jahn, T. P., Møller, A. L. B., Zeuthen, T., Holm, L. M., Klaerke, D. A., Mohsin, B., … Schjoerring, J. K. (2004). Aquaporin homologues in plants and mammals transport ammonia. FEBS Letters, 574(1-3), 31-36. doi:10.1016/j.febslet.2004.08.004KAY, R., CHAN, A., DALY, M., & MCPHERSON, J. (1987). Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science, 236(4806), 1299-1302. doi:10.1126/science.236.4806.1299Klebl, F., Wolf, M., & Sauer, N. (2003). A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIP1 , a Nod26-like protein from zucchini (Cucurbita pepo L.), and by Arabidopsis thaliana δ-TIP or γ-TIP. FEBS Letters, 547(1-3), 69-74. doi:10.1016/s0014-5793(03)00671-9Kobayashi, M., Matoh, T., & Azuma, J. (1996). Two Chains of Rhamnogalacturonan II Are Cross-Linked by Borate-Diol Ester Bonds in Higher Plant Cell Walls. Plant Physiology, 110(3), 1017-1020. doi:10.1104/pp.110.3.1017Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262Maurel, C., Verdoucq, L., Luu, D.-T., & Santoni, V. (2008). Plant Aquaporins: Membrane Channels with Multiple Integrated Functions. Annual Review of Plant Biology, 59(1), 595-624. doi:10.1146/annurev.arplant.59.032607.092734Moliterni, V. M. C., Paris, R., Onofri, C., Orrù, L., Cattivelli, L., Pacifico, D., … Mandolino, G. (2015). Early transcriptional changes in Beta vulgaris in response to low temperature. Planta, 242(1), 187-201. doi:10.1007/s00425-015-2299-zMulet, J. M., Alemany, B., Ros, R., Calvete, J. J., & Serrano, R. (2004). Expression of a plant serine O-acetyltransferase inSaccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast, 21(4), 303-312. doi:10.1002/yea.1076Muries, B., Faize, M., Carvajal, M., & Martínez-Ballesta, M. del C. (2011). Identification and differential induction of the expression of aquaporins by salinity in broccoli plants. Molecular BioSystems, 7(4), 1322. doi:10.1039/c0mb00285bNoguchi, K., Yasumori, M., Imai, T., Naito, S., Matsunaga, T., Oda, H., … Fujiwara, T. (1997). bor1-1, an Arabidopsis thaliana Mutant That Requires a High Level of Boron. Plant Physiology, 115(3), 901-906. doi:10.1104/pp.115.3.901Nozawa, A., Takano, J., Kobayashi, M., von Wirén, N., & Fujiwara, T. (2006). Roles of BOR1, DUR3, and FPS1 in boron transport and tolerance inSaccharomyces cerevisiae. FEMS Microbiology Letters, 262(2), 216-222. doi:10.1111/j.1574-6968.2006.00395.xO’Neill, M. A., Warrenfeltz, D., Kates, K., Pellerin, P., Doco, T., Darvill, A. G., & Albersheim, P. (1996). Rhamnogalacturonan-II, a Pectic Polysaccharide in the Walls of Growing Plant Cell, Forms a Dimer That Is Covalently Cross-linked by a Borate Ester. Journal of Biological Chemistry, 271(37), 22923-22930. doi:10.1074/jbc.271.37.22923Pang, Y., Li, L., Ren, F., Lu, P., Wei, P., Cai, J., … Wang, X. (2010). Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. Journal of Genetics and Genomics, 37(6), 389-397. doi:10.1016/s1673-8527(09)60057-6Patankar, H. V., Al-Harrasi, I., Al-Yahyai, R., & Yaish, M. W. (2018). Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay. DNA and Cell Biology, 37(6), 524-534. doi:10.1089/dna.2018.4159Peiro, A., Izquierdo‐Garcia, A. C., Sanchez‐Navarro, J. A., Pallas, V., Mulet, J. M., & Aparicio, F. (2014). Patellins 3 and 6, two members of the P lant P atellin family, interact with the movement protein of A lfalfa mosaic virus and interfere with viral movement. Molecular Plant Pathology, 15(9), 881-891. doi:10.1111/mpp.12146Porcel, R., Aroca, R., Azcón, R., & Ruiz-Lozano, J. M. (2006). PIP Aquaporin Gene Expression in Arbuscular Mycorrhizal Glycine max and Lactuca  sativa Plants in Relation to Drought Stress Tolerance. Plant Molecular Biology, 60(3), 389-404. doi:10.1007/s11103-005-4210-yROZEMA, J., BRUIN, J., & BROEKMAN, R. A. (1992). Effect of boron on the growth and mineral economy of some halophytes and non-halophytes. New Phytologist, 121(2), 249-256. doi:10.1111/j.1469-8137.1992.tb01111.xSayle, R. (1995). RASMOL: biomolecular graphics for all. Trends in Biochemical Sciences, 20(9), 374-376. doi:10.1016/s0968-0004(00)89080-5Serrano, R., Montesinos, C., Gaxiola, R., Ríos, G., Forment, J., Leube, M., … Ros, R. (2003). FUNCTIONAL GENOMICS OF SALT TOLERANCE: THE YEAST OVEREXPRESSION APPROACH. Acta Horticulturae, (609), 31-38. doi:10.17660/actahortic.2003.609.2Shorrocks, V. M. (1997). Plant and Soil, 193(2), 121-148. doi:10.1023/a:1004216126069Soto, G., Alleva, K., Mazzella, M. A., Amodeo, G., & Muschietti, J. P. (2008). AtTIP1;3andAtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Letters, 582(29), 4077-4082. doi:10.1016/j.febslet.2008.11.002Sreedharan, S., Shekhawat, U. K. S., & Ganapathi, T. R. (2015). Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Molecular Biology, 88(1-2), 41-52. doi:10.1007/s11103-015-0305-2Su, Y., Liang, W., Liu, Z., Wang, Y., Zhao, Y., Ijaz, B., & Hua, J. (2017). Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. Journal of Plant Physiology, 218, 222-234. doi:10.1016/j.jplph.2017.07.017Takano, J., Noguchi, K., Yasumori, M., Kobayashi, M., Gajdos, Z., Miwa, K., … Fujiwara, T. (2002). Arabidopsis boron transporter for xylem loading. Nature, 420(6913), 337-340. doi:10.1038/nature01139Tanaka, M., & Fujiwara, T. (2007). Physiological roles and transport mechanisms of boron: perspectives from plants. Pflügers Archiv - European Journal of Physiology, 456(4), 671-677. doi:10.1007/s00424-007-0370-8Tanaka, M., Wallace, I. S., Takano, J., Roberts, D. M., & Fujiwara, T. (2008). NIP6;1 Is a Boric Acid Channel for Preferential Transport of Boron to Growing Shoot Tissues in Arabidopsis. The Plant Cell, 20(10), 2860-2875. doi:10.1105/tpc.108.058628Törnroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tajkhorshid, E., … Kjellbom, P. (2005). Structural mechanism of plant aquaporin gating. Nature, 439(7077), 688-694. doi:10.1038/nature04316Uraguchi, S. (2014). Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00125Vicent, I., Navarro, A., Mulet, J. M., Sharma, S., & Serrano, R. (2015). Uptake of inorganic phosphate is a limiting factor for Saccharomyces cerevisiae during growth at low temperatures. FEMS Yeast Research, 15(3). doi:10.1093/femsyr/fov008Wallis, J. W., Chrebet, G., Brodsky, G., Rolfe, M., & Rothstein, R. (1989). A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell, 58(2), 409-419. doi:10.1016/0092-8674(89)90855-6Wieland, W. H., Lammers, A., Schots, A., & Orzáez, D. V. (2006). Plant expression of chicken secretory antibodies derived from combinatorial libraries. Journal of Biotechnology, 122(3), 382-391. doi:10.1016/j.jbiotec.2005.12.020Wimmer, M. A., & Eichert, T. (2013). Review: Mechanisms for boron deficiency-mediated changes in plant water relations. Plant Science, 203-204, 25-32. doi:10.1016/j.plantsci.2012.12.012Yu, G., Li, J., Sun, X., Liu, Y., Wang, X., Zhang, H., & Pan, H. (2017). Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System. International Journal of Molecular Sciences, 18(11), 2444. doi:10.3390/ijms18112444Yuan, D., Li, W., Hua, Y., King, G. J., Xu, F., & Shi, L. (2017). Genome-Wide Identification and Characterization of the Aquaporin Gene Family and Transcriptional Responses to Boron Deficiency in Brassica napus. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01336Zabed, H., Faruq, G., Sahu, J. N., Azirun, M. S., Hashim, R., & Nasrulhaq Boyce, A. (2014). Bioethanol Production from Fermentable Sugar Juice. The Scientific World Journal, 2014, 1-11. doi:10.1155/2014/957102Zhang, Q., Chen, H., He, M., Zhao, Z., Cai, H., Ding, G., … Xu, F. (2017). The boron transporterBnaC4.BOR1;1cis critical for inflorescence development and fertility under boron limitation inBrassica napus. Plant, Cell & Environment, 40(9), 1819-1833. doi:10.1111/pce.1298

    Overexpression of BvHb2, a Class 2 Non-Symbiotic Hemoglobin from Sugar Beet, Confers Drought-Induced Withering Resistance and Alters Iron Content in Tomato

    Get PDF
    Drought stress is one of the major threats to agriculture and concomitantly to food production. Tomato is one of the most important industrial crops, but its tolerance to water scarcity is very low. Traditional plant breeding has a limited margin to minimize this water requirement. In order to design novel biotechnological approaches to cope with this problem, we have screened a plant cDNA library from the halotolerant crop sugar beet (Beta vulgaris L.) for genes able to confer drought/osmotic stress tolerance to the yeast model system upon overexpression. We have identified the gene that encodes BvHb2, a class 2 non-symbiotic hemoglobin, which is present as a single copy in the sugar beet genome, expressed mainly in leaves and regulated by light and abiotic stress. We have evaluated its biotechnological potential in the model plant Arabidopsis thaliana and found that BvHb2 is able to confer drought and osmotic stress tolerance. We also generated transgenic lines of tomato (Solanum lycopersicum) overexpressing BvHb2 and found that the resulting plants are more resistant to drought-induce withering. In addition, transgenic lines overexpressing BvHb2 exhibit increased levels of iron content in leaves. Here, we show that class 2 non-symbiotic plant hemoglobins are targets to generate novel biotechnological crops tolerant to abiotic stress. The fact that these proteins are conserved in plants opens the possibility for using Non-GMO approaches, such as classical breeding, molecular breeding, or novel breeding techniques to increase drought tolerance using this protein as a target.</jats:p

    Phosphoglycerate Kinases Are Co-Regulated to Adjust Metabolism and to Optimize Growth

    Full text link
    [EN] In plants, phosphoglycerate kinase (PGK) converts 1,3-bisphosphoglycerate into 3-phosphoglycerate in glycolysis but also participates in the reverse reaction in gluconeogenesis and the Calvin-Benson cycle. In the databases, we found three genes that encode putative PGKs. Arabidopsis (Arabidopsis thaliana) PGK1 was localized exclusively in the chloroplasts of photosynthetic tissues, while PGK2 was expressed in the chloroplast/plastid of photosynthetic and nonphotosynthetic cells. PGK3 was expressed ubiquitously in the cytosol of all studied cell types. Measurements of carbohydrate content and photosynthetic activities in PGK mutants and silenced lines corroborated that PGK1 was the photosynthetic isoform, while PGK2 and PGK3 were the plastidial and cytosolic glycolytic isoforms, respectively. The pgk1.1 knockdown mutant displayed reduced growth, lower photosynthetic capacity, and starch content. The pgk3.2 knockout mutant was characterized by reduced growth but higher starch levels than the wild type. The pgk1.1 pgk3.2 double mutant was bigger than pgk3.2 and displayed an intermediate phenotype between the two single mutants in all measured biochemical and physiological parameters. Expression studies in PGK mutants showed that PGK1 and PGK3 were down-regulated in pgk3.2 and pgk1.1, respectively. These results indicate that the down-regulation of photosynthetic activity could be a plant strategy when glycolysis is impaired to achieve metabolic adjustment and optimize growth. The double mutants of PGK3 and the triose-phosphate transporter (pgk3.2 tpt3) displayed a drastic growth phenotype, but they were viable. This implies that other enzymes or nonspecific chloroplast transporters could provide 3-phosphoglycerate to the cytosol. Our results highlight both the complexity and the plasticity of the plant primary metabolic network.This work has been funded by the Spanish Government and the European Union: FEDER/ BFU2012-31519 and FEDER/ BFU2015-64204R, FPI fellowship to S.R.-T., and the Valencian Regional Government: PROMETEO II/2014/052.Rosa-Tellez, S.; Anoman, A.; Flores-Tornero, M.; Toujani, W.; Alseek, S.; Fernie, A.; Nebauer, SG.... (2018). Phosphoglycerate Kinases Are Co-Regulated to Adjust Metabolism and to Optimize Growth. PLANT PHYSIOLOGY. 176(2):1182-1198. https://doi.org/10.1104/pp.17.01227S11821198176

    Deficiency in the Phosphorylated Pathway of Serine Biosynthesis Perturbs Sulfur Assimilation

    Get PDF
    Anoman AD, Flores-Tornero M, Benstein RM, et al. Deficiency in the Phosphorylated Pathway of Serine Biosynthesis Perturbs Sulfur Assimilation. PLANT PHYSIOLOGY. 2019;180(1):153-170.Although the plant Phosphorylated Pathway of L-Ser Biosynthesis (PPSB) is essential for embryo and pollen development, and for root growth, its metabolic implications have not been fully investigated. A transcriptomics analysis of Arabidopsis (Arabidopsis thaliana) PPSB-deficient mutants at night, when PPSB activity is thought to be more important, suggested interaction with the sulfate assimilation process. Because sulfate assimilation occurs mainly in the light, we also investigated it in PPSB-deficient lines in the day. Key genes in the sulfate starvation response, such as the adenosine 5'phosphosulfate reductase genes, along with sulfate transporters, especially those involved in sulfate translocation in the plant, were induced in the PPSB-deficient lines. However, sulfate content was not reduced in these lines as compared with wild-type plants; besides the glutathione (GSH) steady-state levels in roots of PPSB-deficient lines were even higher than in wild type. This suggested that PPSB deficiency perturbs the sulfate assimilation process between tissues/organs. Alteration of thiol distribution in leaves from different developmental stages, and between aerial parts and roots in plants with reduced PPSB activity, provided evidence supporting this idea. Diminished PPSB activity caused an enhanced flux of S-35 into thiol biosynthesis, especially in roots. GSH turnover also accelerated in the PPSB-deficient lines, supporting the notion that not only biosynthesis, but also transport and allocation, of thiols were perturbed in the PPSB mutants. Our results suggest that PPSB is required for sulfide assimilation in specific heterotrophic tissues and that a lack of PPSB activity perturbs sulfur homeostasis between photosynthetic and nonphotosynthetic tissues

    Serine in plants: biosynthesis, metabolism, and functions

    No full text
    Serine (Ser) has a fundamental role in metabolism and signaling in living organisms. In plants, the existence of different pathways of Ser biosynthesis has complicated our understanding of this amino acid homeostasis. The photorespiratory glycolate pathway has been considered to be of major importance, whereas the nonphotorespiratory phosphorylated pathway has been relatively neglected. Recent advances indicate that the phosphorylated pathway has an important function in plant metabolism and development. Plants deficient in this pathway display developmental defects in embryos, male gametophytes, and roots. We propose that the phosphorylated pathway is more important than was initially thought because it is the only Ser source for specific cell types involved in developmental events. Here, we discuss its importance as a link between metabolism and development in plants
    corecore