249 research outputs found
Positional Cues in the Drosophila Nerve Cord: Semaphorins Pattern the Dorso-Ventral Axis
Positional cues target sensory axons to appropriate volumes of the developing nervous system independently of their synaptic partners
Rac1-Dependent Collective Cell Migration Is Required for Specification of the Anterior-Posterior Body Axis of the Mouse
Live imaging and analysis of conditional mutants show that the embryonic organizer that determines the anterior-posterior axis in the mouse embryo moves by Rac1-dependent collective cell migration
A Functional Misexpression Screen Uncovers a Role for Enabled in Progressive Neurodegeneration
Drosophila is a well-established model to study the molecular basis of neurodegenerative diseases. We carried out a misexpression screen to identify genes involved in neurodegeneration examining locomotor behavior in young and aged flies. We hypothesized that a progressive loss of rhythmic activity could reveal novel genes involved in neurodegenerative mechanisms. One of the interesting candidates showing progressive arrhythmicity has reduced enabled (ena) levels. ena down-regulation gave rise to progressive vacuolization in specific regions of the adult brain. Abnormal staining of pre-synaptic markers such as cystein string protein (CSP) suggest that axonal transport could underlie the neurodegeneration observed in the mutant. Reduced ena levels correlated with increased apoptosis, which could be rescued in the presence of p35, a general Caspase inhibitor. Thus, this mutant recapitulates two important features of human neurodegenerative diseases, i.e., vulnerability of certain neuronal populations and progressive degeneration, offering a unique scenario in which to unravel the specific mechanisms in an easily tractable organism
The Drosophila GIPC Homologue Can Modulate Myosin Based Processes and Planar Cell Polarity but Is Not Essential for Development
Epithelia often show, in addition to the ubiquitous apico-basal (A/B) axis, a polarization within the plane of the epithelium, perpendicular to the A/B axis. Such planar cell polarity (PCP) is for example evident in the regular arrangement of the stereocilia in the cochlea of the mammalian inner ear or in (almost) all Drosophila adult external structures. GIPCs (GAIP interacting protein, C terminus) were first identified in mammals and bind to the Gαi GTPase activating protein RGS-GAIP. They have been proposed to act in a G-protein coupled complex controlling vesicular trafficking. Although GIPCs have been found to bind to numerous proteins including Frizzled receptors, which participate in PCP establishment, there is little in vivo evidence for the functional role(s) of GIPCs. We show here that overexpressed Drosophila dGIPC alters PCP generation in the wing. We were however unable to find any binding between dGIPC and the Drosophila receptors Fz1 and Fz2. The effect of overexpressed dGIPC is likely due to an effect on the actin cytoskeleton via myosins, since it is almost entirely suppressed by removing a genomic copy of the Myosin VI/jaguar gene. Surprisingly, although dGIPC can interfere with PCP generation and myosin based processes, the complete loss-of-function of dGIPC gives viable adults with no PCP or other detectable defects arguing for a non-essential role of dGIPC in viability and normal Drosophila development
Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae)
<p>Abstract</p> <p>Background</p> <p>The sterile insect technique (SIT) is an environment-friendly method used in area-wide pest management of the Mediterranean fruit fly <it>Ceratitis capitata </it>(Wiedemann; Diptera: Tephritidae). Ionizing radiation used to generate reproductive sterility in the mass-reared populations before release leads to reduction of competitiveness.</p> <p>Results</p> <p>Here, we present a first alternative reproductive sterility system for medfly based on transgenic embryonic lethality. This system is dependent on newly isolated medfly promoter/enhancer elements of cellularization-specifically-expressed genes. These elements act differently in expression strength and their ability to drive lethal effector gene activation. Moreover, position effects strongly influence the efficiency of the system. Out of 60 combinations of driver and effector construct integrations, several lines resulted in larval and pupal lethality with one line showing complete embryonic lethality. This line was highly competitive to wildtype medfly in laboratory and field cage tests.</p> <p>Conclusion</p> <p>The high competitiveness of the transgenic lines and the achieved 100% embryonic lethality causing reproductive sterility without the need of irradiation can improve the efficacy of operational medfly SIT programs.</p
Genetic Identification of a Network of Factors that Functionally Interact with the Nucleosome Remodeling ATPase ISWI
Nucleosome remodeling and covalent modifications of histones play fundamental roles in chromatin structure and function. However, much remains to be learned about how the action of ATP-dependent chromatin remodeling factors and histone-modifying enzymes is coordinated to modulate chromatin organization and transcription. The evolutionarily conserved ATP-dependent chromatin-remodeling factor ISWI plays essential roles in chromosome organization, DNA replication, and transcription regulation. To gain insight into regulation and mechanism of action of ISWI, we conducted an unbiased genetic screen to identify factors with which it interacts in vivo. We found that ISWI interacts with a network of factors that escaped detection in previous biochemical analyses, including the Sin3A gene. The Sin3A protein and the histone deacetylase Rpd3 are part of a conserved histone deacetylase complex involved in transcriptional repression. ISWI and the Sin3A/Rpd3 complex co-localize at specific chromosome domains. Loss of ISWI activity causes a reduction in the binding of the Sin3A/Rpd3 complex to chromatin. Biochemical analysis showed that the ISWI physically interacts with the histone deacetylase activity of the Sin3A/Rpd3 complex. Consistent with these findings, the acetylation of histone H4 is altered when ISWI activity is perturbed in vivo. These findings suggest that ISWI associates with the Sin3A/Rpd3 complex to support its function in vivo
Dual Lipolytic Control of Body Fat Storage and Mobilization in Drosophila
Energy homeostasis is a fundamental property of animal life, providing a genetically fixed balance between fat storage and mobilization. The importance of body fat regulation is emphasized by dysfunctions resulting in obesity and lipodystrophy in humans. Packaging of storage fat in intracellular lipid droplets, and the various molecules and mechanisms guiding storage-fat mobilization, are conserved between mammals and insects. We generated a Drosophila mutant lacking the receptor (AKHR) of the adipokinetic hormone signaling pathway, an insect lipolytic pathway related to ß-adrenergic signaling in mammals. Combined genetic, physiological, and biochemical analyses provide in vivo evidence that AKHR is as important for chronic accumulation and acute mobilization of storage fat as is the Brummer lipase, the homolog of mammalian adipose triglyceride lipase (ATGL). Simultaneous loss of Brummer and AKHR causes extreme obesity and blocks acute storage-fat mobilization in flies. Our data demonstrate that storage-fat mobilization in the fly is coordinated by two lipocatabolic systems, which are essential to adjust normal body fat content and ensure lifelong fat-storage homeostasis
Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator
In this manuscript, we report on the culture of anaerobic and aerobic species within a disposable multilayer polydimethylsiloxane (PDMS) microfluidic device with an integrated differential oxygenator. A gas-filled microchannel network functioning as an oxygen−nitrogen mixer generates differential oxygen concentration. By controlling the relative flow rate of the oxygen and nitrogen input gases, the dissolved oxygen (DO) concentration in proximal microchannels filled with culture media are precisely regulated by molecular diffusion. Sensors consisting of an oxygen-sensitive dye embedded in the fluid channels permit dynamic fluorescence-based monitoring of the DO concentration using low-cost light-emitting diodes. To demonstrate the general utility of the platform for both aerobic and anaerobic culture, three bacteria with differential oxygen requirements (E. coli, A. viscosus, and F. nucleatum), as well as a model mammalian cell line (murine embryonic fibroblast cells (3T3)), were cultured. Growth characteristics of the selected species were analyzed as a function of eight discrete DO concentrations, ranging from 0 ppm (anaerobic) to 42 ppm (fully saturated)
Differential Expressions of Adhesive Molecules and Proteases Define Mechanisms of Ovarian Tumor Cell Matrix Penetration/Invasion
Epithelial ovarian cancer is an aggressive and deadly disease and understanding its invasion mechanisms is critical for its treatment. We sought to study the penetration/invasion of ovarian tumor cells into extracellular matrices (ECMs) using a fibroblast-derived three-dimensional (3D) culture model and time-lapse and confocal imaging. Twelve ovarian tumor cells were evaluated and classified into distinct groups based on their ECM remodeling phenotypes; those that degraded the ECM (represented by OVCAR5 cells) and those that did not (represented by OVCAR10 cells). Cells exhibiting a distinct ECM modifying behavior were also segregated by epithelial- or mesenchymal-like phenotypes and uPA or MMP-2/MMP-9 expression. The cells, which presented epithelial-like phenotypes, penetrated the ECM using proteases and maintained intact cell-cell interactions, while cells exhibiting mesenchymal phenotypes modified the matrices via Rho-associated serine/threonine kinase (ROCK) in the absence of apparent cell-cell interactions. Overall, this study demonstrates that different mechanisms of modifying matrices by ovarian tumor cells may reflect heterogeneity among tumors and emphasize the need to systematically assess these mechanisms to better design effective therapies
Involvement of Lgl and Mahjong/VprBP in Cell Competition
Mahjong is a novel Lethal giant larvae-binding protein that plays a vital role in cell competition in both flies and mammals
- …