38 research outputs found

    Unifying the low-temperature photoluminescence spectra of carbon nanotubes: the role of acoustic phonon confinement

    Get PDF
    At low temperature the photoluminescence of single-wall carbon nanotubes show a large variety of spectral profiles ranging from ultra narrow lines in suspended nanotubes to broad and asymmetrical line-shapes that puzzle the current interpretation in terms of exciton-phonon coupling. Here, we present a complete set of photoluminescence profiles in matrix embedded nanotubes including unprecedented narrow emission lines. We demonstrate that the diversity of the low-temperature luminescence profiles in nanotubes originates in tiny modifications of their low-energy acoustic phonon modes. When low energy modes are locally suppressed, a sharp photoluminescence line as narrow as 0.7 meV is restored. Furthermore, multi-peak luminescence profiles with specific temperature dependence show the presence of confined phonon modes

    Chirality dependence of the absorption cross-section of carbon nanotubes

    Get PDF
    The variation of the optical absorption of carbon nanotubes with their geometry has been a long standing question at the heart of both metrological and applicative issues, in particular because optical spectroscopy is one of the primary tools for the assessment of the chiral species abundance of samples. Here, we tackle the chirality dependence of the optical absorption with an original method involving ultra-efficient energy transfer in porphyrin/nanotube compounds that allows uniform photo-excitation of all chiral species. We measure the absolute absorption cross-section of a wide range of semiconducting nanotubes at their S22 transition and show that it varies by up to a factor of 2.2 with the chiral angle, with type I nanotubes showing a larger absorption. In contrast, the luminescence quantum yield remains almost constant

    Quantum efficiency of energy transfer in noncovalent carbon nanotube/porphyrin compounds

    Get PDF
    International audienceWe report on the quantum yield of excitation energy transfer in non-covalently bound nan- otube/porphyrin compounds. Evidence for energy transfer is gained from photoluminescence exci- tation experiments. We perform a quantitative evaluation of the transfer quantum yield in the case of (6,5) nanotubes through three independent methods : quantitative PLE measurements, evalu- ation of the luminescence quenching of the donor (porphyrin) and ultrafast transient absorption measurements. The latter shows a tremendous increase of the porphyrin recovery rate upon incor- poration in the compound. All these measurements consistently lead to an exceptional quantum yield efficiency

    Exciton broadening in WS2 /graphene heterostructures

    Get PDF
    We have used optical spectroscopy to observe spectral broadening of WS2 exciton reflectance peaks in heterostructures of monolayer WS2 capped with mono- to few-layer graphene. The broadening is found to be similar for the A and B excitons and on the order of 5-10 meV. No strong dependence on the number of graphene layers was observed within experimental uncertainty. The broadening can be attributed to charge- and energy-transfer processes between the two materials, providing an observed lower bound for the corresponding time scales of 65 fs

    Pi-stacking functionalization through micelles swelling: Application to the synthesis of single wall carbon nanotube/porphyrin complexes for energy transfer

    Get PDF
    We report on a new, orginal and efficient method for "pi-stacking" functionalization of single wall carbon nanotubes. This method is applied to the synthesis of a high-yield light-harvesting system combining single wall carbon nanotubes and porphyrin molecules. We developed a micelle swelling technique that leads to controlled and stable complexes presenting an efficient energy transfer. We demonstrate the key role of the organic solvent in the functionalization mechanism. By swelling the micelles, the solvent helps the non water soluble porphyrins to reach the micelle core and allows a strong enhancement of the interaction between porphyrins and nanotubes. This technique opens new avenues for the functionalization of carbon nanostructures.Comment: 6 pages, 5 figure

    Transfert d’énergie dans des composés nanotube de carbone/porphyrine

    No full text
    In the field of photovoltaic, hybrid organic solar cells are one of the most promising ways, especially due to the light collection properties of chromophore molecules. On the other hand, carbon nanotubes are quasi one-dimensional nano-objects showing exceptional transport properties. The achievement of a significant coupling between a light harvesting molecule and a carbon nanotube is an important route to explore. This research is dedicated to the study of energy transfer in carbon nanotube/chromophore compounds. A new method of non-covalent functionalization of carbon nanotubes is presented. Based on a micellar suspension of nanotubes, this method provides a high degree of functionalization while preserving the intrinsic properties of nanotubes. The energy transfer is shown in nanotube/porphyrin compounds by photoluminescence excitation spectroscopy on ensembles as well as at the single molecule scale. The evaluation of the quantum efficiency of the transfer by three independent methods shows a coupling of the order of 100% between the molecule and the nanotube, despite the weak interactions between “Pi” orbitals involved in the non-covalent functionalization. The final part of this work is dedicated to anisotropy measurements on single compounds to gain information on molecular arrangement on the surface of nanotubes.Dans le domaine du photovoltaïque, les cellules hybrides organiques sont une des voies les plus prometteuses, notamment grâce aux propriétés de collection de lumière des molécules de type chromophore. Les nanotubes de carbone, quant à eux, sont des nano-objets quasi unidimensionnels qui présentent des propriétés de transport exceptionnelles. La réalisation d’un couplage important entre une molécule collectrice de lumière et un nanotube de carbone représente donc une voie importante à explorer. Ce travail de recherche est consacré à l’étude du transfert d’énergie dans les composés nanotubes de carbone/chromophore. Une nouvelle méthode de fonctionnalisation non covalente des nanotubes de carbone est présentée. Basée sur une suspension micellaire de nanotubes, cette méthode permet d’obtenir un fort taux de fonctionnalisation tout en préservant les propriétés intrinsèques des nanotubes. Le transfert d’énergie est mis en évidence sur les composés nanotube/porphyrine par des mesures d’excitation de la photoluminescence sur ensemble de nanotubes ainsi que sur objets uniques. L’évaluation du rendement quantique de transfert par trois méthodes indépendantes montre un couplage de l’ordre de 100% entre la molécule et le nanotube- et ce malgré la faiblesse des interactions entre orbitales «Pi» mises en jeu dans la fonctionnalisation non covalente. Le dernier volet de ce travail est consacré à des mesures d’anisotropie à l’échelle de l’objet unique permettant d’obtenir des informations quant à l’arrangement des molécules à la surface des nanotubes

    Energy transfer in carbon nanotube/chromophore compounds

    No full text
    Dans le domaine du photovoltaïque, les cellules hybrides organiques sont une des voies les plus prometteuses, notamment grâce aux propriétés de collection de lumière des molécules de type chromophore. Les nanotubes de carbone, quant à eux, sont des nano-objets quasi unidimensionnels qui présentent des propriétés de transport exceptionnelles. La réalisation d’un couplage important entre une molécule collectrice de lumière et un nanotube de carbone représente donc une voie importante à explorer. Ce travail de recherche est consacré à l’étude du transfert d’énergie dans les composés nanotubes de carbone/chromophore. Une nouvelle méthode de fonctionnalisation non covalente des nanotubes de carbone est présentée. Basée sur une suspension micellaire de nanotubes, cette méthode permet d’obtenir un fort taux de fonctionnalisation tout en préservant les propriétés intrinsèques des nanotubes. Le transfert d’énergie est mis en évidence sur les composés nanotube/porphyrine par des mesures d’excitation de la photoluminescence sur ensemble de nanotubes ainsi que sur objets uniques. L’évaluation du rendement quantique de transfert par trois méthodes indépendantes montre un couplage de l’ordre de 100% entre la molécule et le nanotube- et ce malgré la faiblesse des interactions entre orbitales «Pi» mises en jeu dans la fonctionnalisation non covalente. Le dernier volet de ce travail est consacré à des mesures d’anisotropie à l’échelle de l’objet unique permettant d’obtenir des informations quant à l’arrangement des molécules à la surface des nanotubes.In the field of photovoltaic, hybrid organic solar cells are one of the most promising ways, especially due to the light collection properties of chromophore molecules. On the other hand, carbon nanotubes are quasi one-dimensional nano-objects showing exceptional transport properties. The achievement of a significant coupling between a light harvesting molecule and a carbon nanotube is an important route to explore. This research is dedicated to the study of energy transfer in carbon nanotube/chromophore compounds. A new method of non-covalent functionalization of carbon nanotubes is presented. Based on a micellar suspension of nanotubes, this method provides a high degree of functionalization while preserving the intrinsic properties of nanotubes. The energy transfer is shown in nanotube/porphyrin compounds by photoluminescence excitation spectroscopy on ensembles as well as at the single molecule scale. The evaluation of the quantum efficiency of the transfer by three independent methods shows a coupling of the order of 100% between the molecule and the nanotube, despite the weak interactions between “Pi” orbitals involved in the non-covalent functionalization. The final part of this work is dedicated to anisotropy measurements on single compounds to gain information on molecular arrangement on the surface of nanotubes

    Transfert d'énergie dans des composés nanotube de carbone/porphyrine

    No full text
    Dans le domaine du photovoltaïque, les cellules hybrides organiques sont une des voies les plus prometteuses, notamment grâce aux propriétés de collection de lumière des molécules de type chromophore. Les nanotubes de carbone, quant à eux, sont des nano-objets quasi unidimensionnels qui présentent des propriétés de transport exceptionnelles. La réalisation d un couplage important entre une molécule collectrice de lumière et un nanotube de carbone représente donc une voie importante à explorer. Ce travail de recherche est consacré à l étude du transfert d énergie dans les composés nanotubes de carbone/chromophore. Une nouvelle méthode de fonctionnalisation non covalente des nanotubes de carbone est présentée. Basée sur une suspension micellaire de nanotubes, cette méthode permet d obtenir un fort taux de fonctionnalisation tout en préservant les propriétés intrinsèques des nanotubes. Le transfert d énergie est mis en évidence sur les composés nanotube/porphyrine par des mesures d excitation de la photoluminescence sur ensemble de nanotubes ainsi que sur objets uniques. L évaluation du rendement quantique de transfert par trois méthodes indépendantes montre un couplage de l ordre de 100% entre la molécule et le nanotube- et ce malgré la faiblesse des interactions entre orbitales Pi mises en jeu dans la fonctionnalisation non covalente. Le dernier volet de ce travail est consacré à des mesures d anisotropie à l échelle de l objet unique permettant d obtenir des informations quant à l arrangement des molécules à la surface des nanotubes.In the field of photovoltaic, hybrid organic solar cells are one of the most promising ways, especially due to the light collection properties of chromophore molecules. On the other hand, carbon nanotubes are quasi one-dimensional nano-objects showing exceptional transport properties. The achievement of a significant coupling between a light harvesting molecule and a carbon nanotube is an important route to explore. This research is dedicated to the study of energy transfer in carbon nanotube/chromophore compounds. A new method of non-covalent functionalization of carbon nanotubes is presented. Based on a micellar suspension of nanotubes, this method provides a high degree of functionalization while preserving the intrinsic properties of nanotubes. The energy transfer is shown in nanotube/porphyrin compounds by photoluminescence excitation spectroscopy on ensembles as well as at the single molecule scale. The evaluation of the quantum efficiency of the transfer by three independent methods shows a coupling of the order of 100% between the molecule and the nanotube, despite the weak interactions between Pi orbitals involved in the non-covalent functionalization. The final part of this work is dedicated to anisotropy measurements on single compounds to gain information on molecular arrangement on the surface of nanotubes.CACHAN-ENS (940162301) / SudocSudocFranceF

    Structural characterization of mill-scale on production steel using terahertz pulse imaging in reflective geometry

    No full text
    International audienceTerahertz pulsed imaging was employed to characterize the mill scale thickness on production steel, validating this practical application of terahertz technology in a production environment
    corecore