47 research outputs found

    Free vibration analysis of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses

    Full text link
    This paper presents a differential quadrature element method for free transverse vibration of a robotic-fish based on a continuous and non-uniform flexible backbone with distributed masses (represented by ribs) based in the theory of a Timoshenko cantilever beam. The effects of the masses (Number, Magnitud and position) on the value of natural frequencies are investigated. Governing equations, compatibility and boundary conditions are formulated according to the Differential Quadrature rules. The compatibility conditions at the position of each distributed mass are assumed as the continuity in the vertical displacement, rotation and bending moment and discontinuity in the transverse force due to acceleration of the distributed mass. The convergence, efficiency and accuracy are compared to other analytical solutions proposed in the literature. Moreover, the proposed method has been validate against the physical prototype of a flexible fish backbone. The main advantages of this method, compared to the exact solutions available in the literature are twofold: first, smaller time-cost and second, it allows analysing the free vibration in beams whose section is an arbitrary function, which is normally difficult or even impossible with analytical other methods

    DEVELOPMENT OF A WIRELESS SIGNAL ACQUISITION SYSTEM FROM SENSORS FOR COMFORT AND ENERGY QUALITY

    Get PDF
    AbstractThe acquisition of wireless signals from sensors represents a variety of advantages over cable communication systems. This work presents a ZigBee-based signal acquisition system that takes advantage of its features to make a flexible system that can be used in different fields without the necessary use of a PC since a touchscreen and a microcontroller is used. The system is implemented in a building to monitor all the physical variables that are referred for the comfort of people, such as luminosity, temperature, humidity, gas concentration, smoke, human presence, glass breakage among others. The measure of these variables also could contribute to define or activate some extra-functions of the system, for example, alarms in case of fire presence. The system stores information of all sensors of all the network created in a Micro SD and uses it to make plots, also it is possible to visualize real-time readings.Keywords: Touchscreen, wireless sensor network (WSN), ZigBee.DESARROLLO DE UN SISTEMA DE ADQUISICIÓN DE SEÑALES INALÁMBRICAS A PARTIR DE SENSORES PARA COMODIDAD Y CALIDAD ENERGÉTICAResumenLa adquisición de señales inalámbricas de sensores representa una variedad de ventajas sobre los sistemas de comunicación por cable. Este trabajo presenta un sistema de adquisición de señales basado en antenas ZigBee que aprovecha sus características para hacer un sistema flexible que puede ser utilizado en diferentes campos sin el uso necesario de una PC ya que se utiliza una pantalla táctil y un microcontrolador. El sistema es implementado en un edificio para monitorear todas las variables físicas que se refieren a la comodidad de las personas, tales como luminosidad, temperatura, humedad, concentración de gas, humo, presencia humana, rotura de vidrios, entre otros. La medición de estas variables también es utilizada para activar algunas funciones extras del sistema, por ejemplo, alarmas en caso de presencia de fuego. El sistema almacena información de todos los sensores de toda la red creada en una Micro SD y crea gráficos históricos de dichas variables, además, es posible visualizar lecturas en tiempo real.Palabras claves: Pantalla táctil, red de sensores inalámbrica, ZigBee

    Advances in power quality analysis techniques for electrical machines and drives: a review

    Get PDF
    The electric machines are the elements most used at an industry level, and they represent the major power consumption of the productive processes. Particularly speaking, among all electric machines, the motors and their drives play a key role since they literally allow the motion interchange in the industrial processes; it could be said that they are the medullar column for moving the rest of the mechanical parts. Hence, their proper operation must be guaranteed in order to raise, as much as possible, their efficiency, and, as consequence, bring out the economic benefits. This review presents a general overview of the reported works that address the efficiency topic in motors and drives and in the power quality of the electric grid. This study speaks about the relationship existing between the motors and drives that induces electric disturbances into the grid, affecting its power quality, and also how these power disturbances present in the electrical network adversely affect, in turn, the motors and drives. In addition, the reported techniques that tackle the detection, classification, and mitigations of power quality disturbances are discussed. Additionally, several works are reviewed in order to present the panorama that show the evolution and advances in the techniques and tendencies in both senses: motors and drives affecting the power source quality and the power quality disturbances affecting the efficiency of motors and drives. A discussion of trends in techniques and future work about power quality analysis from the motors and drives efficiency viewpoint is provided. Finally, some prompts are made about alternative methods that could help in overcome the gaps until now detected in the reported approaches referring to the detection, classification and mitigation of power disturbances with views toward the improvement of the efficiency of motors and drives.Peer ReviewedPostprint (published version

    Power disturbance monitoring through techniques for novelty detection on wind power and photovoltaic generation

    Get PDF
    Novelty detection is a statistical method that verifies new or unknown data, determines whether these data are inliers (within the norm) or outliers (outside the norm), and can be used, for example, in developing classification strategies in machine learning systems for industrial applications. To this end, two types of energy that have evolved over time are solar photovoltaic and wind power generation. Some organizations around the world have developed energy quality standards to avoid known electric disturbances; however, their detection is still a challenge. In this work, several techniques for novelty detection are implemented to detect different electric anomalies (disturbances), which are k-nearest neighbors, Gaussian mixture models, one-class support vector machines, self-organizing maps, stacked autoencoders, and isolation forests. These techniques are applied to signals from real power quality environments of renewable energy systems such as solar photovoltaic and wind power generation. The power disturbances that will be analyzed are considered in the standard IEEE-1159, such as sag, oscillatory transient, flicker, and a condition outside the standard attributed to meteorological conditions. The contribution of the work consists of the development of a methodology based on six techniques for novelty detection of power disturbances, under known and unknown conditions, over real signals in the power quality assessment. The merit of the methodology is a set of techniques that allow to obtain the best performance of each one under different conditions, which constitutes an important contribution to the renewable energy systems.Postprint (published version

    Genetic algorithm methodology for the estimation of generated power and harmonic content in photovoltaic generation

    Get PDF
    Producción CientíficaRenewable generation sources like photovoltaic plants are weather dependent and it is hard to predict their behavior. This work proposes a methodology for obtaining a parameterized model that estimates the generated power in a photovoltaic generation system. The proposed methodology uses a genetic algorithm to obtain the mathematical model that best fits the behavior of the generated power through the day. Additionally, using the same methodology, a mathematical model is developed for harmonic distortion estimation that allows one to predict the produced power and its quality. Experimentation is performed using real signals from a photovoltaic system. Eight days from different seasons of the year are selected considering different irradiance conditions to assess the performance of the methodology under different environmental and electrical conditions. The proposed methodology is compared with an artificial neural network, with the results showing an improved performance when using the genetic algorithm methodology.CONACYT (scholarship 415315)FOFI –UAQ 2018 (project FIN201812)PRODEP (project UAQ-PTC-385

    Vegetative Growth, Flowering and Attributes of Physicochemical Quality in Blackberry ‘Tupy’ Fruits Grown in Chihuahua, Mexico

    Get PDF
    The aim of this research was to evaluate the vegetative growth, flowering and some attributes of physicochemical quality in blackberry ‘Tupy’ fruits cultivated in Chihuahua, Mexico. The study was carried out in San Juanito and La Finca with twenty-five replications per site. The length and number of sprouts, flowering, total soluble solids (TSS), total titratable acidity (TTA), pH, colour, ascorbic acid (AA), total anthocyanins (TA), total phenols (TP) and antioxidant capacity (AC) were evaluated. San Juanito presented the blackberry plants with the longest sprout length (169.71 cm), but their number was similar to La Finca, which also showed statistical significance with respect to the minimum temperature range (-2.9 and -1.2 °C), which manifested itself in less accumulation of cold units (658) and degree days (886). The flowering event started at 108 Julian days (April 19) for San Juanito completely evading the occurrence of late frosts, while La Finca maintained a 10% risk. The fruits harvested in the Finca showed the highest content of TA (75.7 mg cyanid-3-glucosid 100 g-1), maintaining the fruit quality without changes for both sites. The results indicate that the environmental temperature conditions of San Juanito are suitable for vegetative growth and floral development, by completely avoiding the occurrence of late frosts and obtaining fruits with quality similar to that harvested in orchards with commercial production

    Vegetative Growth and Quality of Blueberry Fruit Cultivated in Chihuahua, Mexico

    Get PDF
    The aim of this investigation was to evaluate the vegetative growth and some physicochemical quality parameters in fruits of different varieties of blueberries grown with amendments applied to the soil. The experimental design was completely randomized according to factorial treatments with nine replications. Length and number of shoots, flower buds number, total soluble solids (TSS), pH, color, total anthocyanins (TA), total phenols (TP) and antioxidant capacity (AC) were evaluated. The application of gypsum, sulphur and compost increased the shoots number in the varieties ‘Bluejay’ and ‘Duke’ with values from 15 and 17.5, respectively. The ‘Duke’ variety was the latest with regard to the flowering stage, evading the problem of frost. Among varieties, ‘Bluejay’ and ‘Blueray’ stood out for presenting fruits with greater acidity and antioxidant capacity (89.1 and 91.5% DPPH inhibition, respectively), however, the TP was higher in ‘Bluejay’ (701.6 mg gallic acid 100 g-1). The use of gypsum, sulphur and compost allows obtaining fruits with high soluble solids content (9.8 °Brix), however, the antioxidant capacity was similar when pine peel was included, with AC values from 91.4 and 88.8% DPPH inhibition, respectively. The amendments such as gypsum, sulphur and compost incorporated into the soil allow an adequate vegetative growth and the obtaining of blueberry fruits with physicochemical quality characteristics acceptable for their commercialization

    The valve uptake index: improving assessment of prosthetic valve endocarditis and updating [18F]FDG PET/CT(A) imaging criteria

    Get PDF
    Infective endocarditis; Nuclear imaging; Positron emission tomographyEndocarditis infecciosa; Imagen nuclear; Tomografía de emisión de positronesEndocarditis infecciosa; Imatge nuclear; Tomografia per emissió de positronsAims Diagnosis of prosthetic valve endocarditis (PVE) by positron emission computed tomography angiography (PET/CTA) is based on visual and quantitative morpho-metabolic features. However, the fluorodeoxyglucose (FDG) uptake pattern can be sometimes visually unclear and susceptible to subjectivity. This study aimed to validate a new parameter, the valve uptake index [VUI, maximum standardized uptake value (SUVmax)−mean standardized uptake value (SUVmean)/SUVmax], designed to provide a more objective indication of the distribution of metabolic activity. Secondly, to re-evaluate the utility of traditionally used PVE imaging criteria and determine the potential value of adding the VUI in the diagnostic algorithm of PVE. Methods and results Retrospective analysis of 122 patients (135 prosthetic valves) admitted for suspicion of endocarditis, with a conclusive diagnosis of definite (N = 57) or rejected (N = 65) PVE, and who had undergone a cardiac PET/CTA scan as part of the diagnostic evaluation. We measured the VUI and recorded the SUVmax, SUVratio, uptake pattern, and the presence of endocarditis-related anatomic lesions. The VUI, SUVmax, and SUVratio values were 0.54 ± 0.1 vs. 0.36 ± 0.08, 7.68 ± 3.07 vs. 3.72 ± 1.11, and 4.28 ± 1.93 vs. 2.16 ± 0.95 in the ‘definite’ PVE group vs. the ‘rejected’ group, respectively (mean ± SD; P 0.45 showed a sensitivity, specificity, and diagnostic accuracy for PVE of 85%, 88%, and 86.7% and increased diagnostic ability for confirming endocarditis when combined with the standard diagnostic criteria. Conclusions The VUI demonstrated good diagnostic accuracy for PVE, even increasing the diagnostic power of the traditionally used morphometabolic parameters, which also confirmed their own diagnostic performance. More research is needed to assess whether the integration of the VUI into the PVE diagnostic algorithm may clarify doubtful cases and thus improve the diagnostic yield of PET/CTA

    The valve uptake index : improving assessment of prosthetic valve endocarditis and updating [ 18 F]FDG PET/CT(A) imaging criteria

    Get PDF
    Diagnosis of prosthetic valve endocarditis (PVE) by positron emission computed tomography angiography (PET/CTA) is based on visual and quantitative morpho-metabolic features. However, the fluorodeoxyglucose (FDG) uptake pattern can be sometimes visually unclear and susceptible to subjectivity. This study aimed to validate a new parameter, the valve uptake index [VUI, maximum standardized uptake value (SUVmax)−mean standardized uptake value (SUVmean)/SUVmax], designed to provide a more objective indication of the distribution of metabolic activity. Secondly, to re-evaluate the utility of traditionally used PVE imaging criteria and determine the potential value of adding the VUI in the diagnostic algorithm of PVE. Retrospective analysis of 122 patients (135 prosthetic valves) admitted for suspicion of endocarditis, with a conclusive diagnosis of definite (N = 57) or rejected (N = 65) PVE, and who had undergone a cardiac PET/CTA scan as part of the diagnostic evaluation. We measured the VUI and recorded the SUVmax, SUVratio, uptake pattern, and the presence of endocarditis-related anatomic lesions. The VUI, SUVmax, and SUVratio values were 0.54 ± 0.1 vs. 0.36 ± 0.08, 7.68 ± 3.07 vs. 3.72 ± 1.11, and 4.28 ± 1.93 vs. 2.16 ± 0.95 in the 'definite' PVE group vs. the 'rejected' group, respectively (mean ± SD; P 0.45 showed a sensitivity, specificity, and diagnostic accuracy for PVE of 85%, 88%, and 86.7% and increased diagnostic ability for confirming endocarditis when combined with the standard diagnostic criteria. The VUI demonstrated good diagnostic accuracy for PVE, even increasing the diagnostic power of the traditionally used morphometabolic parameters, which also confirmed their own diagnostic performance. More research is needed to assess whether the integration of the VUI into the PVE diagnostic algorithm may clarify doubtful cases and thus improve the diagnostic yield of PET/CTA

    Three-dimensional aortic geometry mapping via registration of non-gated contrast-enhanced or gated and respiratory-navigated MR angiographies

    Get PDF
    Aortic aneurysm; Aortic dilation; Magnetic resonance angiographyAneurisma aórtico; Dilatación aórtica; Angiografía por resonancia magnéticaAneurisma aòrtic; Dilatació aòrtica; Angiografia per ressonància magnèticaBackground The measurement of aortic dimensions and their evolution are key in the management of patients with aortic diseases. Manual assessment, the current guideline-recommended method and clinical standard, is subjective, poorly reproducible, and time-consuming, limiting the capacity to track aortic growth in everyday practice. Aortic geometry mapping (AGM) via image registration of serial computed tomography angiograms outperforms manual assessment, providing accurate and reproducible 3D maps of aortic diameter and growth rate. This observational study aimed to evaluate the accuracy and reproducibility of AGM on non-gated contrast-enhanced (CE-) and cardiac- and respiratory-gated (GN-) magnetic resonance angiographies (MRA). Methods Patients with thoracic aortic disease followed with serial CE-MRA (n = 30) or GN-MRA (n = 15) acquired at least 1 year apart were retrospectively and consecutively identified. Two independent observers measured aortic diameters and growth rates (GR) manually at several thoracic aorta reference levels and with AGM. Agreement between manual and AGM measurements and their inter-observer reproducibility were compared. Reproducibility for aortic diameter and GR maps assessed with AGM was obtained. Results Mean follow-up was 3.8 ± 2.3 years for CE- and 2.7 ± 1.6 years for GN-MRA. AGM was feasible in the 93% of CE-MRA pairs and in the 100% of GN-MRA pairs. Manual and AGM diameters showed excellent agreement and inter-observer reproducibility (ICC>0.9) at all anatomical levels. Agreement between manual and AGM GR was more limited, both in the aortic root by GN-MRA (ICC=0.47) and in the thoracic aorta, where higher accuracy was obtained with GN- than with CE-MRA (ICC=0.55 vs 0.43). The inter-observer reproducibility of GR by AGM was superior compared to manual assessment, both with CE- (thoracic: ICC= 0.91 vs 0.51) and GN-MRA (root: ICC=0.84 vs 0.52; thoracic: ICC=0.93 vs 0.60). AGM-based 3D aortic size and growth maps were highly reproducible (median ICC >0.9 for diameters and >0.80 for GR). Conclusion Mapping aortic diameter and growth on MRA via 3D image registration is feasible, accurate and outperforms the current manual clinical standard. This technique could broaden the possibilities of clinical and research evaluation of patients with aortic thoracic diseases.This study has been supported by funding from the Instituto de Salud Carlos III (projects PI19/01480, PI20/01727 and PI21/00448), the Spanish Ministry of Science, Innovation and Universities (RTC2019-007280-1), the Spanish Society of Cardiology (SEC/FEC-INV-CLI 20/015), and the Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV). Guala A. has received funding from “la Caixa” Foundation (LCF/BQ/PR22/11920008). Garrido-Oliver J. has received funding from Secretaria d′Universitats i Recerca del Departament de Recerca i Universitats de la Generalitat de Catalunya i del Fons Europeu Social Plus (AGAUR-FI 2023 FI-1 00322 Joan Oró)
    corecore