262 research outputs found

    Patterns of energy acquisition by penguins: benefits of alternating short and long foraging trips.

    Get PDF
    In some seabirds, foraging trips have been defined as either long or short, with the length of time spent traveling to the foraging area apparently a critical feature in determining foraging trip length. Using logger technology, together with complimentary data from published studies, we investigated traveling and foraging times in 18 free-living Adélie Penguins Pygoscelis adeliae, which were foraging for chicks. Most deep, foraging dives were distributed around the center of the foraging trip. This central tendency was particularly apparent if the cumulative amount of undulations in the depth profile (indicative of prey capture) was considered during deep dives; values started to increase before 20.9% and ceased after 67.2% of the dives had occurred. This concentration of the feeding activity in the middle of the foraging trip indicates that birds traveled to and from a prey patch whose location varied little over the birds' trips. These data form the basis for a simple model that uses traveling and foraging times together with projected rates of prey ingestion and chick and adult gastric emptying to determine that there are occasions when, to optimize rates of prey ingestion while at sea for both adults and chicks, birds should conduct foraging trips of bimodal lengths

    Lip-reading in remote subjects: An attempt to quantify and separate ingestion, breathing and vocalisation in free-living animals

    Get PDF
    A new mandibular sensor is presented here based on the use of a Hall sensor, attached to one mandible, opposite a magnet, attached to the other mandible. Changes in sensor voltage, proportional to magnetic field strength, and thus inter-mandibular angle, are recorded in a logger. This system was tested on seven captive Adélie penguins (Pygoscelis adeliae) and three gentoo penguins (Pygoscelis papua) during: (1) feeding trials on land, where birds were given known quantities and types of food; and (2) trials in water where birds were allowed to swim and dive freely. In addition, six free-living Magellanic penguins (Spheniscus magellanicus) were equipped with the system for single foraging trips. Angular signatures were looked for in instances when both captive and free-living birds might open their beaks, and it was discovered that five major behaviours could be identified: ingestion, breathing, calling, head shaking and preening. Captive feeding trials showed that prey mass could be determined with reasonable accuracy (r 2=0.92), and there was some indication that prey type could be resolved if recording frequency were high enough. Vocalisations in Adélie penguins (arc calls) took <0.7 s for mean maximum beak angles of 4.2° (SD 1.3), and were distinguished by their relatively gradual change in beak angle and by their high degree of symmetry. Beak shakings were distinguishable by their short duration (multiple peaks of <0.5 s) and minimal maximum angle (<0.5°). Preening behaviour was apparent due to multiple decreasing peaks (angles <8°). Breathing could be subdivided into that during porpoising, where a characteristic double peak in beak angle was recorded, and that during normal surface rests between dives. During porpoising, only the primary peak (mean maximum beak angle 25.1°, SD 4.7) occurred when the bird was out of the water (mean maximum for second peak 5.9°, SD 4.1). During normal surface rests in free-living birds, breaths could be distinguished as a series of beak openings and closures, showing variation in amplitude and frequency according to an apparent recovery from the previous dive and preparation for the subsequent dive to come. The mandibular measuring system presented shows considerable promise for elucidating many hitherto intractable aspects of the behaviour of free-living animals

    Can Thermoclines Be a Cue to Prey Distribution for Marine Top Predators? A Case Study with Little Penguins

    Get PDF
    The use of top predators as bio-platforms is a modern approach to understanding how physical changes in the environment may influence their foraging success. This study examined if the presence of thermoclines could be a reliable signal of resource availability for a marine top predator, the little penguin (Eudyptula minor). We studied weekly foraging activity of 43 breeding individual penguins equipped with accelerometers. These loggers also recorded water temperature, which we used to detect changes in thermal characteristics of their foraging zone over 5 weeks during the penguin’s guard phase. Data showed the thermocline was detected in the first 3 weeks of the study, which coincided with higher foraging efficiency. When a thermocline was not detected in the last two weeks, foraging efficiency decreased as well. We suggest that thermoclines can represent temporary markers of enhanced food availability for this top-predator to which they must optimally adjust their breeding cycle

    ECG Response of Koalas to Tourists Proximity: A Preliminary Study

    Get PDF
    Koalas operate on a tight energy budget and, thus, may not always display behavioral avoidance reaction when placed in a stressful condition. We investigated the physiological response of captive koalas Phascolarctos cinereus in a conservation centre to the presence of tourists walking through their habitat. We compared, using animal-attached data-recorders, the electrocardiogram activity of female koalas in contact with tourists and in a human-free area. One of the koalas in the tourist zone presented elevated heart rate values and variability throughout the recording period. The remaining female in the exhibit area showed a higher field resting heart rates during the daytime than that in the isolated area. In the evening, heart rate profiles changed drastically and both the koalas in the exhibit and in the tourist-free zones displayed similar field resting heart rates, which were lower than those during the day. In parallel, the autonomic nervous systems of these two individuals evolved from sympathetic-dominant during the day to parasympathetic-dominant in the evening. Our results report ECG of free-living koalas for the first time. Although they are preliminary due to the difficulty of having sufficient samples of animals of the same sex and age, our results stress out the importance of studies investigating the physiological reaction of animals to tourists

    Towards the integration of animal-borne instruments into global ocean observing systems

    Get PDF
    Funding: BBVA Foundation (“Ayudas FundaciĂłn BBVA a Equipos de InvestigaciĂłn CientĂ­fica 2016”) and the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No 794938; Spanish Government (grant “Juan de la Cierva-FormaciĂłn” FJCI-2014-20064, grant “JosĂ© Castillejo” CAS17/00193) (D.M.).Marine animals are increasingly instrumented with environmental sensors that provide large volumes of oceanographic data. Here, we conduct an innovative and comprehensive global analysis to determine the potential contribution of animal‐borne instruments (ABI) into ocean observing systems (OOSs) and provide a foundation to establish future integrated ocean monitoring programmes. We analyse the current gaps of the long‐term Argo observing system (>1.5 million profiles) and assess its spatial overlap with the distribution of marine animals across eight major species groups (tuna and billfishes, sharks and rays, marine turtles, pinnipeds, cetaceans, sirenians, flying seabirds and penguins). We combine distribution ranges of 183 species and satellite tracking observations from >3,000 animals. Our analyses identify potential areas where ABI could complement OOS. Specifically, ABI have the potential to fill gaps in marginal seas, upwelling areas, the upper 10 m of the water column, shelf regions and polewards of 60° latitude. Our approach provides the global baseline required to plan the integration of ABI into global and regional OOS while integrating conservation and ocean monitoring priorities.Publisher PDFPeer reviewe

    Quantifying prey availability using the foraging plasticity of a marine predator, the little penguin

    Get PDF
    Detecting changes in marine food webs is challenging, but top predators can provide information on lower trophic levels. However, many commonly measured predator responses can be decoupled from prey availability by plasticity in predator foraging effort. This can be overcome by directly measuring foraging effort and success and integrating these into a measure of foraging efficiency analogous to the catch per unit effort (CPUE) index employed by fisheries. We extended existing CPUE methods so that they would be applicable to the study of generalist foragers, which introduce another layer of complexity through dietary plasticity. Using this method, we inferred species‐specific patterns in prey availability and estimated taxon‐specific biomass consumption. We recorded foraging trip duration and body mass change of breeding little penguins Eudyptula minor and combined these with diet composition identified via non‐invasive faecal DNA metabarcoding to derive CPUE indices for individual prey taxa. We captured weekly patterns of availability of key fish prey in the penguins’ diet and identified a major prey shift from sardine Sardinops sagax to red cod Pseudophycis bachus between years. In each year, predation on a dominant fish species (~150 g/day) was replaced by greater diversity of fish in the diet as the breeding season progressed. We estimated that the colony extracted ~1,300 tonnes of biomass from their coastal ecosystem over two breeding seasons, including 219 tonnes of the commercially important sardine and 215 tonnes of red cod. This enhanced pCPUE is applicable to most central‐placed foragers and offers a valuable alternative to existing metrics. Informed prey‐species biomass estimates extracted by apex and meso predators will be a useful input for mass‐balance ecosystem models and for informing ecosystem‐based management. A free Plain Language Summary can be found within the Supporting Information of this article

    Context-dependent changes in maritime traffic activity during the first year of the COVID-19 pandemic

    Get PDF
    Rapid implementation of human mobility restrictions during the COVID-19 pandemic dramatically reduced maritime activity in early 2020. But where and when activity rebounded, or remained low, during the full extent of 2020 restrictions remains unclear. Using global high-resolution datasets, we reveal a surprising degree of complexity in maritime activity patterns during 2020, yielding a more nuanced picture of how restrictions affected activity. Overall, shipping activity in Exclusive Economic Zones decreased (1.35 %), as expected, however high-seas activity increased (0.28 %). While these annual changes appear modest, there were striking spatially and temporally asynchronous variations in different vessel types’ activity in the second half of 2020, ranging from an > 80 % sustained reduction in passenger vessel activity to a 150 % increase in fishing activity. Results suggest systems-level responses were highly context-dependent, pinpointing areas that experienced significant reductions and spikes in activity, and providing hitherto missing details of COVID-19 impacts on economic and environmental sustainability
    • 

    corecore