2,491 research outputs found
Analytical study of laser supported combustion waves in hydrogen
A one-dimensional energy equation, with constant pressure and area, was used to model the LSC wave. This equation balances convection, conduction, laser energy absorption, radiation energy loss and radiation energy transport. Solutions of this energy equation were obtained to give profiles of temperature and other properties, as well as the relation between laser intensity and mass flux through the wave. The flow through the LSC wave was then conducted through a variable pressure, variable area streamtube to accelerate it to high speed, with the propulsion application in mind. A numerical method for coupling the LSC wave model to the streamtube flow was developed, and a sample calculation was performed. The result shows that 42% of the laser power has been radiated away by the time the gas reaches the throat. It was concluded that in the radially confined flows of interest for propulsion applications, transverse velocities would be less important than in the unconfined flows where air experiments have been conducted
Laser-heated rocket studies
CW laser heated rocket propulsion was investigated in both the flowing core and stationary core configurations. The laser radiation considered was 10.6 micrometers, and the working gas was unseeded hydrogen. The areas investigated included initiation of a hydrogen plasma capable of absorbing laser radiation, the radiation emission properties of hot, ionized hydrogen, the flow of hot hydrogen while absorbing and radiating, the heat losses from the gas and the rocket performance. The stationary core configuration was investigated qualitatively and semi-quantitatively. It was found that the flowing core rockets can have specific impulses between 1,500 and 3,300 sec. They are small devices, whose heating zone is only a millimeter to a few centimeters long, and millimeters to centimeters in radius, for laser power levels varying from 10 to 5,000 kW, and pressure levels of 3 to 10 atm. Heat protection of the walls is a vital necessity, though the fraction of laser power lost to the walls can be as low as 10% for larger powers, making the rockets thermally efficient
Proposal for a study of computer mapping of terrain using multispectral data from ERTS-A for the Yellowstone National Park test site
The author has identified the following significant results. A terrain map of Yellowstone National Park showed plant community types and other classes of ground cover in what is basically a wild land. The map comprised 12 classes, six of which were mapped with accuracies of 70 to 95%. The remaining six classes had spectral reflectances that overlapped appreciably, and hence, those were mapped less accurately. Techniques were devised for quantitatively comparing the recognition map of the park with control data acquired from ground inspection and from analysis of sidelooking radar images, a thermal IR mosaic, and IR aerial photos of several scales. Quantitative analyses were made in ten 40 sq km test areas. Comparison mechanics were performed by computer with the final results displayed on line printer output. Forested areas were mapped by computer using ERTS data for less than 1/4 the cost of the conventional forest mapping technique for topographic base maps
High Temperature Phase Transitions in Two-Scalar Theories with Large Techniques
We consider a theory of a scalar one-component field coupled to a
scalar -component field . Using large techiques we calculate the
effective potential in the leading order in . We show that this is
equivalent to a resummation of an infinite subclass of graphs in perturbation
theory, which involve fluctuations of the field only. We study the
temperature dependence of the expectation value of the field and the
resulting first and second order phase transitions.Comment: 11 pages, LaTex, includes 5 uuencoded postscript figures, OUTP-94-11
Dallas with balls: televized sport, soap opera and male and female pleasures
Two of the most popular of television genres, soap opera and sports coverage have been very much differentiated along gender lines in terms of their audiences. Soap opera has been regarded very much as a 'gynocentric' genre with a large female viewing audience while the audiences for television sport have been predominantly male. Gender differentiation between the genres has had implications for the popular image of each. Soap opera has been perceived as inferior; as mere fantasy and escapism for women while television sports has been perceived as a legitimate, even edifying experience for men.
In this article the authors challenge the view that soap opera and television sport are radically different and argue that they are, in fact, very similar in a number of significant ways. They suggest that both genres invoke similar structures of feeling and sensibility in their respective audiences and that television sport is a 'male soap opera'. They consider the ways in which the viewing context of each genre is related to domestic life and leisure, the ways in which the textual structure and conventions of each genre invoke emotional identification, and finally, the ways in which both genres re-affirm gender identities
The Kramers equation simulation algorithm II. An application to the Gross-Neveu model
We continue the investigation on the applications of the Kramers equation to
the numerical simulation of field theoretic models. In a previous paper we have
described the theory and proposed various algorithms. Here, we compare the
simplest of them with the Hybrid Monte Carlo algorithm studying the
two-dimensional lattice Gross-Neveu model. We used a Symanzik improved action
with dynamical Wilson fermions. Both the algorithms allow for the determination
of the critical mass. Their performances in the definite phase simulations are
comparable with the Hybrid Monte Carlo. For the two methods, the numerical
values of the measured quantities agree within the errors and are compatible
with the theoretical predictions; moreover, the Kramers algorithm is safer from
the point of view of the numerical precision.Comment: 20 pages + 1 PostScript figure not included, REVTeX 3.0, IFUP-TH-2
Virtual Texture Generated using Elastomeric Conductive Block Copolymer in Wireless Multimodal Haptic Glove.
Haptic devices are in general more adept at mimicking the bulk properties of materials than they are at mimicking the surface properties. This paper describes a haptic glove capable of producing sensations reminiscent of three types of near-surface properties: hardness, temperature, and roughness. To accomplish this mixed mode of stimulation, three types of haptic actuators were combined: vibrotactile motors, thermoelectric devices, and electrotactile electrodes made from a stretchable conductive polymer synthesized in our laboratory. This polymer consisted of a stretchable polyanion which served as a scaffold for the polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). The scaffold was synthesized using controlled radical polymerization to afford material of low dispersity, relatively high conductivity (0.1 S cm-1), and low impedance relative to metals. The glove was equipped with flex sensors to make it possible to control a robotic hand and a hand in virtual reality (VR). In psychophysical experiments, human participants were able to discern combinations of electrotactile, vibrotactile, and thermal stimulation in VR. Participants trained to associate these sensations with roughness, hardness, and temperature had an overall accuracy of 98%, while untrained participants had an accuracy of 85%. Sensations could similarly be conveyed using a robotic hand equipped with sensors for pressure and temperature
Infrared Behaviour of Systems With Goldstone Bosons
We develop various complementary concepts and techniques for handling quantum
fluctuations of Goldstone bosons.We emphasise that one of the consequences of
the masslessness of Goldstone bosons is that the longitudinal fluctuations also
have a diverging susceptibility characterised by an anomalous dimension
in space-time dimensions .In these fluctuations diverge
logarithmically in the infrared region.We show the generality of this
phenomenon by providing three arguments based on i). Renormalization group
flows, ii). Ward identities, and iii). Schwinger-Dyson equations.We obtain an
explicit form for the generating functional of one-particle irreducible
vertices of the O(N) (non)--linear --models in the leading 1/N
approximation.We show that this incorporates all infrared behaviour correctly
both in linear and non-linear -- models. Our techniques provide an
alternative to chiral perturbation theory.Some consequences are discussed
briefly.Comment: 28 pages,2 Figs, a new section on some universal features of
multipion processes has been adde
Three-Dimensional Quantum Percolation Studied by Level Statistics
Three-dimensional quantum percolation problems are studied by analyzing
energy level statistics of electrons on maximally connected percolating
clusters. The quantum percolation threshold \pq, which is larger than the
classical percolation threshold \pc, becomes smaller when magnetic fields are
applied, i.e., \pq(B=0)>\pq(B\ne 0)>\pc. The critical exponents are found to
be consistent with the recently obtained values of the Anderson model,
supporting the conjecture that the quantum percolation is classified onto the
same universality classes of the Anderson transition. Novel critical level
statistics at the percolation threshold is also reported.Comment: to appear in the May issue of J. Phys. Soc. Jp
- …
