161 research outputs found

    The extrinsic proteins of Photosystem II

    Get PDF
    In this review we examine the structure and function of the extrinsic proteins of Photosystem II. These proteins include PsbO, present in all oxygenic organisms, the PsbP and PsbQ proteins, which are found in higher plants and eukaryotic algae, and the PsbU, PsbV, CyanoQ, and CyanoP proteins, which are found in the cyanobacteria. These proteins serve to optimize oxygen evolution at physiological calcium and chloride concentrations. They also shield the Mn 4CaO 5 cluster from exogenous reductants. Numerous biochemical, genetic and structural studies have been used to probe the structure and function of these proteins within the photosystem. We will discuss the most recent proposed functional roles for these components, their structures (as deduced from biochemical and X-ray crystallographic studies) and the locations of their proposed binding domains within the Photosystem II complex. This article is part of a Special Issue entitled: Photosystem II. Ā© 2011 Elsevier B.V. All rights reserved

    Rapid Vapor-Phase Deposition of High-Mobility p-Type Buffer Layers on Perovskite Photovoltaics for Efficient Semi-Transparent Devices

    Get PDF
    Perovskite solar cells (PSCs) with transparent electrodes can be integrated with existing solar panels in tandem configurations to increase the power conversion efficiency. A critical layer in semi-transparent PSCs is the inorganic buffer layer, which protects the PSC against damage when the transparent electrode is sputtered on top. The development of n-i-p structured semi-transparent PSCs has been hampered by the lack of suitable p-type buffer layers. In this work we develop a p-type CuOx buffer layer, which can be grown uniformly over the perovskite device without damaging the perovskite or organic hole transport layer. The CuOx layer has high hole mobility (4.3 Ā± 2 cm2 V-1 s-1), high transmittance (>95%), and a suitable ionization potential for hole extraction (5.3 Ā± 0.2 eV). Semi-transparent PSCs with efficiencies up to 16.7% are achieved using the CuOx buffer layer. Our work demonstrates a new approach to integrate n-i-p structured PSCs into tandem configurations, as well as enable the development of other devices that need high quality, protective p-type layers.EPSRC Department Training Partnership studentship (No: EP/N509620/1), as well as Bill Welland. T.N.H. acknowledges funding from the EPSRC Centre for Doctoral Training in Graphene Technology (No. EP/L016087/1) and the Aziz Foundation. W.-W.L. and J.L.M.-D. acknowledge support from the EPSRC (Nos.: EP/L011700/1, EP/N004272/10), and the Isaac Newton Trust (Minute 13.38(k)). M.N. and J.L.M.-D. acknowledge financial support from EPSRC (No. EP/P027032/1). S. D. S. acknowledges support from the Royal Society and Tata Group (UF150033). R.L.Z.H. acknowledges support from the Royal Academy of Engineering under the Research Fellowship scheme (No.: RF\201718\1701), the Centre of Advanced Materials for Integrated Energy Systems (EPSRC Grant No. EP/P007767/1), the Isaac Newton Trust (Minute 19.07(d)), and the Kim and Juliana Silverman Research Fellowship at Downing College, Cambridge

    Functional interactions between Dlx2 and lymphoid enhancer factor regulate Msx2

    Get PDF
    Dlx2, Lymphoid Enhancer Factor (Lef-1) and Msx2 transcription factors are required for several developmental processes. To understand the control of gene expression by these factors, chromatin immunoprecipitation (ChIP) assays identified Msx2 as a downstream target of Dlx2 and Lef-1. Dlx2 activates the Msx2 promoter in several cell lines and binds DNA as a monomer and dimer. A Lef-1 Ī²-catenin-dependent isoform minimally activates the Msx2 promoter and a Lef-1 Ī²-catenin-independent isoform is inactive, however co-expression of Dlx2 and both Lef-1 isoforms synergistically activate the Msx2 promoter. Co-immunoprecipitation and protein pull-down experiments demonstrate Lef-1 physically interacts with Dlx2. Deletion analyses of the Lef-1 protein reveal specific regions required for synergism with Dlx2. The Lef-1 Ī²-catenin binding domain (Ī²DB) is not required for its interaction with Dlx2. Msx2 can auto-regulate its promoter and repress Dlx2 activation. Msx2 repression of Dlx2 activation is dose-specific and both bind a common DNA-binding element. These transcriptional mechanisms correlate with the temporal and spatial expression of these factors and may provide a mechanism for the control of several developmental processes. We demonstrate new transcriptional activities for Dlx2, Msx2 and Lef-1 through protein interactions and identification of downstream targets

    Elevated Stress-Hemoconcentration in Major Depression Is Normalized by Antidepressant Treatment: Secondary Analysis from a Randomized, Double-Blind Clinical Trial and Relevance to Cardiovascular Disease Risk

    Get PDF
    Major depressive disorder (MDD) is an independent risk factor for cardiovascular disease (CVD); the presence of MDD symptoms in patients with CVD is associated with a higher incidence of cardiac complications following acute myocardial infarction (MI). Stress-hemoconcentration, a result of psychological stress that might be a risk factor for the pathogenesis of CVD, has been studied in stress-challenge paradigms but has not been systematically studied in MDD.Secondary analysis of stress hemoconcentration was performed on data from controls and subjects with mild to moderate MDD participating in an ongoing pharmacogenetic study of antidepressant treatment response to desipramine or fluoxetine. Hematologic and hemorheologic measures of stress-hemoconcentration included blood cell counts, hematocrit, hemoglobin, total serum protein, and albumin, and whole blood viscosity.Subjects with mild to moderate MDD had significantly increased hemorheologic measures of stress-hemoconcentration and blood viscosity when compared to controls; these measures were correlated with depression severity. Measures of stress-hemoconcentration improved significantly after 8 weeks of antidepressant treatment. Improvements in white blood cell count, red blood cell measures and plasma volume were correlated with decreased severity of depression.Our secondary data analyses support that stress-hemoconcentration, possibly caused by decrements in plasma volume during psychological stress, is present in Mexican-American subjects with mild to moderate MDD at non-challenged baseline conditions. We also found that after antidepressant treatment hemorheologic measures of stress-hemoconcentration are improved and are correlated with improvement of depressive symptoms. These findings suggest that antidepressant treatment may have a positive impact in CVD by ameliorating increased blood viscosity. Physicians should be aware of the potential impact of measures of hemoconcentration and consider the implications for cardiovascular risk in depressed patients

    Dazap2 modulates transcription driven by the Wnt effector TCF-4

    Get PDF
    A major outcome of the canonical Wnt/Ī²-catenin-signalling pathway is the transcriptional activation of a specific set of target genes. A typical feature of the transcriptional response induced by Wnt signalling is the involvement of Tcf/Lef factors that function in the nucleus as the principal mediators of signalling. Vertebrate Tcf/Lef proteins perform two well-characterized functions: in association with Ī²-catenin they activate gene expression, and in the absence of Wnt ligands they bind TLE/Groucho proteins to act as transcriptional repressors. Although the general characteristics of Tcf/Lef factors are well understood, the mechanisms that control their specific roles in various cellular backgrounds are much less defined. In this report we reveal that the evolutionary conserved Dazap2 protein functions as a TCF-4 interacting partner. We demonstrate that a short region proximal to the TCF-4 HMG box mediates the interaction and that all Tcf/Lef family members associate with Dazap2. Interestingly, knockdown of Dazap2 not only reduced the activity of Wnt signalling as measured by Tcf/Ī²-catenin reporters but additionally altered the expression of Wnt-signalling target genes. Finally, chromatin immunoprecipitation studies indicate that Dazap2 modulates the affinity of TCF-4 for its DNA-recognition motif

    Roadmap on Photovoltaic Absorber Materials for Sustainable Energy Conversion

    Full text link
    Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfil ambitions for net-zero carbon dioxide equivalent (CO2eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TWp in 2021 to 8.5 TWp by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the photovoltaics community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.Comment: 160 pages, 21 figure

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution
    • ā€¦
    corecore