38 research outputs found

    Depression and anxiety in glioma patients

    Full text link
    Glioma patients carry the burden of having both a progressive neurological disease and cancer, and may face a variety of symptoms, including depression and anxiety. These symptoms are highly prevalent in glioma patients (median point prevalence ranging from 16-41% for depression and 24-48% for anxiety when assessed by self-report questionnaires) and have a major impact on health-related quality of life and even overall survival time. A worse overall survival time for glioma patients with depressive symptoms might be due to tumor progression and/or its supportive treatment causing depressive symptoms, an increased risk of suicide or other (unknown) factors. Much is still unclear about the etiology of depressive and anxiety symptoms in glioma. These psychiatric symptoms often find their cause in a combination of neurophysiological and psychological factors, such as the tumor and/or its treatment. Although these patients have a particular idiosyncrasy, standard treatment guidelines for depressive and anxiety disorders apply, generally recommending psychological and pharmacological treatment. Only a few nonpharmacological trials have been conducted evaluating the efficacy of psychological treatments (eg, a reminiscence therapy-based care program) in this population, which significantly reduced depressive and anxiety symptoms. No pharmacological trials have been conducted in glioma patients specifically. More well-designed trials evaluating the efficacy of nonpharmacological treatments for depressive and anxiety disorders in glioma are urgently needed to successfully treat psychiatric symptoms in brain tumor patients and to improve (health-related) quality of life

    Depression and anxiety in glioma patients

    Get PDF
    AbstractGlioma patients carry the burden of having both a progressive neurological disease and cancer, and may face a variety of symptoms, including depression and anxiety. These symptoms are highly prevalent in glioma patients (median point prevalence ranging from 16-41% for depression and 24-48% for anxiety when assessed by self-report questionnaires) and have a major impact on health-related quality of life and even overall survival time. A worse overall survival time for glioma patients with depressive symptoms might be due to tumor progression and/or its supportive treatment causing depressive symptoms, an increased risk of suicide or other (unknown) factors. Much is still unclear about the etiology of depressive and anxiety symptoms in glioma. These psychiatric symptoms often find their cause in a combination of neurophysiological and psychological factors, such as the tumor and/or its treatment. Although these patients have a particular idiosyncrasy, standard treatment guidelines for depressive and anxiety disorders apply, generally recommending psychological and pharmacological treatment. Only a few nonpharmacological trials have been conducted evaluating the efficacy of psychological treatments (eg, a reminiscence therapy-based care program) in this population, which significantly reduced depressive and anxiety symptoms. No pharmacological trials have been conducted in glioma patients specifically. More well-designed trials evaluating the efficacy of nonpharmacological treatments for depressive and anxiety disorders in glioma are urgently needed to successfully treat psychiatric symptoms in brain tumor patients and to improve (health-related) quality of life

    Depression prevalence using the HADS-D compared to SCID major depression classification:An individual participant data meta-analysis

    Get PDF
    Objectives: Validated diagnostic interviews are required to classify depression status and estimate prevalence of disorder, but screening tools are often used instead. We used individual participant data meta-analysis to compare prevalence based on standard Hospital Anxiety and Depression Scale – depression subscale (HADS-D) cutoffs of ≥8 and ≥11 versus Structured Clinical Interview for DSM (SCID) major depression and determined if an alternative HADS-D cutoff could more accurately estimate prevalence. Methods: We searched Medline, Medline In-Process & Other Non-Indexed Citations via Ovid, PsycINFO, and Web of Science (inception-July 11, 2016) for studies comparing HADS-D scores to SCID major depression status. Pooled prevalence and pooled differences in prevalence for HADS-D cutoffs versus SCID major depression were estimated. Results: 6005 participants (689 SCID major depression cases) from 41 primary studies were included. Pooled prevalence was 24.5% (95% Confidence Interval (CI): 20.5%, 29.0%) for HADS-D ≥8, 10.7% (95% CI: 8.3%, 13.8%) for HADS-D ≥11, and 11.6% (95% CI: 9.2%, 14.6%) for SCID major depression. HADS-D ≥11 was closest to SCID major depression prevalence, but the 95% prediction interval for the difference that could be expected for HADS-D ≥11 versus SCID in a new study was −21.1% to 19.5%. Conclusions: HADS-D ≥8 substantially overestimates depression prevalence. Of all possible cutoff thresholds, HADS-D ≥11 was closest to the SCID, but there was substantial heterogeneity in the difference between HADS-D ≥11 and SCID-based estimates. HADS-D should not be used as a substitute for a validated diagnostic interview.This study was funded by the Canadian Institutes of Health Research (CIHR, KRS-144045 & PCG 155468). Ms. Neupane was supported by a G.R. Caverhill Fellowship from the Faculty of Medicine, McGill University. Drs. Levis and Wu were supported by Fonds de recherche du Québec - Santé (FRQS) Postdoctoral Training Fellowships. Mr. Bhandari was supported by a studentship from the Research Institute of the McGill University Health Centre. Ms. Rice was supported by a Vanier Canada Graduate Scholarship. Dr. Patten was supported by a Senior Health Scholar award from Alberta Innovates, Health Solutions. The primary study by Scott et al. was supported by the Cumming School of Medicine and Alberta Health Services through the Calgary Health Trust, and funding from the Hotchkiss Brain Institute. The primary study by Amoozegar et al. was supported by the Alberta Health Services, the University of Calgary Faculty of Medicine, and the Hotchkiss Brain Institute. The primary study by Cheung et al. was supported by the Waikato Clinical School, University of Auckland, the Waikato Medical Research Foundation and the Waikato Respiratory Research Fund. The primary study by Cukor et al. was supported in part by a Promoting Psychological Research and Training on Health-Disparities Issues at Ethnic Minority Serving Institutions Grants (ProDIGs) awarded to Dr. Cukor from the American Psychological Association. The primary study by De Souza et al. was supported by Birmingham and Solihull Mental Health Foundation Trust. The primary study by Honarmand et al. was supported by a grant from the Multiple Sclerosis Society of Canada. The primary study by Fischer et al. was supported as part of the RECODEHF study by the German Federal Ministry of Education and Research (01GY1150). The primary study by Gagnon et al. was supported by the Drummond Foundation and the Department of Psychiatry, University Health Network. The primary study by Akechi et al. was supported in part by a Grant-in-Aid for Cancer Research (11−2) from the Japanese Ministry of Health, Labour and Welfare and a Grant-in-Aid for Young Scientists (B) from the Japanese Ministry of Education, Culture, Sports, Science and Technology. The primary study by Kugaya et al. was supported in part by a Grant-in-Aid for Cancer Research (9–31) and the Second-Term Comprehensive 10-year Strategy for Cancer Control from the Japanese Ministry of Health, Labour and Welfare. The primary study Ryan et al. was supported by the Irish Cancer Society (Grant CRP08GAL). The primary study by Keller et al. was supported by the Medical Faculty of the University of Heidelberg (grant no. 175/2000). The primary study by Love et al. (2004) was supported by the Kathleen Cuningham Foundation (National Breast Cancer Foundation), the Cancer Council of Victoria and the National Health and Medical Research Council. The primary study by Love et al. (2002) was supported by a grant from the Bethlehem Griffiths Research Foundation. The primary study by Löwe et al. was supported by the medical faculty of the University of Heidelberg, Germany (Project 121/2000). The primary study by Navines et al. was supported in part by the Spanish grants from the Fondo de Investigación en Salud, Instituto de Salud Carlos III (EO PI08/90869 and PSIGEN-VHC Study: FIS-E08/00268) and the support of FEDER (one way to make Europe). The primary study by O'Rourke et al. was supported by the Scottish Home and Health Department, Stroke Association, and Medical Research Council. The primary study by Sanchez-Gistau et al. was supported by a grant from the Ministry of Health of Spain (PI040418) and in part by Catalonia Government, DURSI 2009SGR1119. The primary study by Gould et al. was supported by the Transport Accident Commission Grant. The primary study by Rooney et al. was supported by the NHS Lothian Neuro-Oncology Endowment Fund. The primary study by Schwarzbold et al. was supported by PRONEX Program (NENASC Project) and PPSUS Program of Fundaçao de Amparo a esquisa e Inovacao do Estado de Santa Catarina (FAPESC) and the National Science and Technology Institute for Translational Medicine (INCT-TM). The primary study by Simard et al. was supported by IDEA grants from the Canadian Prostate Cancer Research Initiative and the Canadian Breast Cancer Research Alliance, as well as a studentship from the Canadian Institutes of Health Research. The primary study by Singer et al. (2009) was supported by a grant from the German Federal Ministry for Education and Research (no. 01ZZ0106). The primary study by Singer et al. (2008) was supported by grants from the German Federal Ministry for Education and Research (# 7DZAIQTX) and of the University of Leipzig (# formel. 1–57). The primary study by Meyer et al. was supported by the Federal Ministry of Education and Research (BMBF). The primary study by Stone et al. was supported by the Medical Research Council, UK and Chest Heart and Stroke, Scotland. The primary study by Turner et al. was supported by a bequest from Jennie Thomas through Hunter Medical Research Institute. The primary study by Walterfang et al. was supported by Melbourne Health. Drs. Benedetti and Thombs were supported by FRQS researcher salary awards. No other authors reported funding for primary studies or for their work on this study. No funder had any role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication

    Patient Health Questionnaire-9 scores do not accurately estimate depression prevalence: individual participant data meta-analysis.

    Get PDF
    OBJECTIVES: Depression symptom questionnaires are not for diagnostic classification. Patient Health Questionnaire-9 (PHQ-9) scores ≥10 are nonetheless often used to estimate depression prevalence. We compared PHQ-9 ≥10 prevalence to Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders (SCID) major depression prevalence and assessed whether an alternative PHQ-9 cutoff could more accurately estimate prevalence. STUDY DESIGN AND SETTING: Individual participant data meta-analysis of datasets comparing PHQ-9 scores to SCID major depression status. RESULTS: A total of 9,242 participants (1,389 SCID major depression cases) from 44 primary studies were included. Pooled PHQ-9 ≥10 prevalence was 24.6% (95% confidence interval [CI]: 20.8%, 28.9%); pooled SCID major depression prevalence was 12.1% (95% CI: 9.6%, 15.2%); and pooled difference was 11.9% (95% CI: 9.3%, 14.6%). The mean study-level PHQ-9 ≥10 to SCID-based prevalence ratio was 2.5 times. PHQ-9 ≥14 and the PHQ-9 diagnostic algorithm provided prevalence closest to SCID major depression prevalence, but study-level prevalence differed from SCID-based prevalence by an average absolute difference of 4.8% for PHQ-9 ≥14 (95% prediction interval: -13.6%, 14.5%) and 5.6% for the PHQ-9 diagnostic algorithm (95% prediction interval: -16.4%, 15.0%). CONCLUSION: PHQ-9 ≥10 substantially overestimates depression prevalence. There is too much heterogeneity to correct statistically in individual studies
    corecore