48 research outputs found

    Genome wide association study of fetal hemoglobin in sickle cell anemia in Tanzania.

    Get PDF
    BACKGROUND: Fetal hemoglobin (HbF) is an important modulator of sickle cell disease (SCD). HbF has previously been shown to be affected by variants at three loci on chromosomes 2, 6 and 11, but it is likely that additional loci remain to be discovered. METHODS AND FINDINGS: We conducted a genome-wide association study (GWAS) in 1,213 SCA (HbSS/HbSβ0) patients in Tanzania. Genotyping was done with Illumina Omni2.5 array and imputation using 1000 Genomes Phase I release data. Association with HbF was analysed using a linear mixed model to control for complex population structure within our study. We successfully replicated known associations for HbF near BCL11A and the HBS1L-MYB intergenic polymorphisms (HMIP), including multiple independent effects near BCL11A, consistent with previous reports. We observed eight additional associations with P<10(-6). These associations could not be replicated in a SCA population in the UK. CONCLUSIONS: This is the largest GWAS study in SCA in Africa. We have confirmed known associations and identified new genetic associations with HbF that require further replication in SCA populations in Africa

    Genetic association of fetal-hemoglobin levels in individuals with sickle cell disease in Tanzania maps to conserved regulatory elements within the MYB core enhancer.

    Get PDF
    BACKGROUND: Common genetic variants residing near upstream regulatory elements for MYB, the gene encoding transcription factor cMYB, promote the persistence of fetal hemoglobin (HbF) into adulthood. While they have no consequences in healthy individuals, high HbF levels have major clinical benefits in patients with sickle cell disease (SCD) or β thalassemia. Here, we present our detailed investigation of HBS1L-MYB intergenic polymorphism block 2 (HMIP-2), the central component of the complex quantitative-trait locus upstream of MYB, in 1,022 individuals with SCD in Tanzania. METHODS: We have looked at 1022 individuals with HbSS or HbS/β(0) in Tanzania. In order to achieve a detailed analysis of HMIP-2, we performed targeted genotyping for a total of 10 SNPs and extracted additional 528 SNPs information from a genome wide scan involving the same population. Using MACH, we utilized the existing YRI data from 1000 genomes to impute 54 SNPs situated within HIMP-2. RESULTS: Seven HbF-increasing, low-frequency variants (β > 0.3, p < 10(-5), f ≤ 0.05) were located in two partially-independent sub-loci, HMIP-2A and HMIP-2B. The spectrum of haplotypes carrying such alleles was diverse when compared to European and West African reference populations: we detected one such haplotype at sub-locus HMIP-2A, two at HMIP-2B, and a fourth including high-HbF alleles at both sub-loci ('Eurasian' haplotype clade). In the region of HMIP-2A a putative functional variant (a 3-bp indel) has been described previously, but no such candidate causative variant exists at HMIP-2B. Extending our dataset through imputation with 1000 Genomes, whole-genome-sequence data, we have mapped peak association at HMIP-2B to an 11-kb region around rs9494145 and rs9483788, flanked by two conserved regulatory elements for MYB. CONCLUSIONS: Studies in populations from the African continent provide distinct opportunities for mapping disease-modifying genetic loci, especially for conditions that are highly prevalent there, such as SCD. Population-genetic characteristics of our cohort, such as ethnic diversity and the predominance of shorter, African-type haplotypes, can add to the power of such studies

    A survey of genetic fetal-haemoglobin modifiers in Nigerian patients with sickle cell anaemia

    Get PDF
    Genetic variants at three quantitative trait loci (QTL) for fetal haemoglobin (HbF), BCL11A, HBS1L-MYB and the β-globin gene cluster, have attracted interest as potential targets of therapeutic strategies for HbF reactivation in sickle cell anaemia (SCA). We carried out the first systematic evaluation of critical single nucleotide polymorphisms at these disease modifier loci in Nigerian patients with SCA. Common variants for BCL11A and HBS1L-MYB were strongly associated with HbF levels. At both loci, secondary association signals were detected, illustrating the mapping resolution attainable in this population. For BCL11A, the two independent sites of association were represented by rs1427407 (primary site, p = 7.0 x 10(-10)) and rs6545816 (secondary site, conditioned on rs1427407: p = 0.02) and for HBS1L-MYB by rs9402686 (HMIP-2B, p = 1.23 x 10(-4)) and rs66650371 (HMIP-2A, p = 0.002). Haplotype analysis revealed similarities in the genetic architecture of BCL11A and HBS1L-MYB in Nigerian patients. Variants at both loci also alleviated anaemia. The variant allele for the γ globin gene promoter polymorphism XmnI-HBG2 was too infrequent in our patients to be evaluated in this relatively small study. Studying the large and diverse SCA patient populations in African countries such as Nigeria will be key for a clearer understanding of how these loci work and for the discovery of new disease modifier genes

    The HBS1L-MYB intergenic interval associated with elevated HbF levels shows characteristics of a distal regulatory region in erythroid cells

    No full text
    HBS1L-MYB intergenic polymorphism (HMIP) on chromosome 6q23 is associated with elevated fetal hemoglobin levels and has pleiotropic effects on several hematologic parameters. To investigate potential regulatory activity in the region, we have measured sensitivity of the sequences to DNase I cleavage that identified 3 tissue-specific DNase I hypersensitive sites in the core intergenic interval. Chromatin immunoprecipitation with microarray (ChIP-chip) analysis showed strong histone acetylation in a defined interval of 65 kb corresponding to the core HBS1L-MYB intergenic region in primary human erythroid cells but not in non-MYB-expressing HeLa cells. ChIP-chip analysis also identified several potential cis-regulatory elements as strong GATA-1 signals that coincided with the DNase I hypersensitive sites present in MYB-expressing erythroid cells. We suggest that HMIP contains regulatory sequences that could be important in hematopoiesis by controlling MYB expression. This study provides the functional link between genetic association of HMIP with control of fetal hemoglobin and other hematologic parameters. We also present a large-scale analysis of histone acetylation as well as RNA polymerase II and GATA-1 interactions on chromosome 6q, and alpha and beta globin gene loci. The data suggest that GATA-1 regulates numerous genes of various functions on chromosome 6q

    Supplemental Material - Cognition and Wealth Changes in Mid-to-later Life: A Latent Class Trajectories Approach Using the Health and Retirement Study

    No full text
    Supplemental Material for Cognition and Wealth Changes in Mid-to-later Life: A Latent Class Trajectories Approach Using the Health and Retirement Study by Ashly C. Westrick, Darlingtina K. Esiaka, Helen C.S. Meier, Ronica N. Rooks, Mark Manning, and Wassim Tarraf in Journal of Aging and Health</p
    corecore