122 research outputs found

    Selling Data to a Competitor (Extended Abstract)

    Full text link
    We study the costs and benefits of selling data to a competitor. Although selling all consumers' data may decrease total firm profits, there exist other selling mechanisms -- in which only some consumers' data is sold -- that render both firms better off. We identify the profit-maximizing mechanism, and show that the benefit to firms comes at a cost to consumers. We then construct Pareto-improving mechanisms, in which each consumers' welfare, as well as both firms' profits, increase. Finally, we show that consumer opt-in can serve as an instrument to induce firms to choose a Pareto-improving mechanism over a profit-maximizing one.Comment: In Proceedings TARK 2023, arXiv:2307.04005. A full version of this paper, containing all proofs, appears at arXiv:2302.0028

    Enhancement of two photon processes in quantum dots embedded in subwavelength metallic gratings

    Full text link
    We show a large enhancement of two-photon absorption processes in nanocrystal quantum dots and of light upconversion efficiency from the IR to the near-IR spectral regime, using a hybrid optical device in which near-IR emitting InAs quantum dots were embedded on top a metallic nanoslit array. The resonant enhancement of these nonlinear optical processes is due to the strong local electromagnetic field enhancements inside the nanoslit array structure at the extraordinary transmission resonances. A maximal two-photon absorption enhancement of more than 20 was inferred. Different high field regions were identified for different polarizations, which can be used for designing and optimizing efficient nonlinear processes in such hybrid structures. Combining nanocrystal quantum dots with subwavelength metallic nanostructures is therfore a promising way for a range of possible nonlinear optical devices.Comment: 14 pages, 7 figure

    Genome-wide association mapping of rust resistance in Aegilops longissima

    Get PDF
    The rust diseases, including leaf rust caused by Puccinia triticina (Pt), stem rust caused by P. graminis f. sp. tritici (Pgt), and stripe rust caused by P. striiformis f. sp. tritici (Pst), are major limiting factors in wheat production worldwide. Identification of novel sources of rust resistance genes is key to developing cultivars resistant to rapidly evolving pathogen populations. Aegilops longissima is a diploid wild grass native to the Levant and closely related to the modern bread wheat D subgenome. To explore resistance genes in the species, we evaluated a large panel of Ae. longissima for resistance to several races of Pt, Pgt, and Pst, and conducted a genome-wide association study (GWAS) to map rust resistance loci in the species. A panel of 404 Ae. longissima accessions, mostly collected from Israel, were screened for seedling-stage resistance to four races of Pt, four races of Pgt, and three races of Pst. Out of the 404 accessions screened, two were found that were resistant to all 11 races of the three rust pathogens screened. The percentage of all accessions screened that were resistant to a given rust pathogen race ranged from 18.5% to 99.7%. Genotyping-by-sequencing (GBS) was performed on 381 accessions of the Ae. longissima panel, wherein 125,343 single nucleotide polymorphisms (SNPs) were obtained after alignment to the Ae. longissima reference genome assembly and quality control filtering. Genetic diversity analysis revealed the presence of two distinct subpopulations, which followed a geographic pattern of a northern and a southern subpopulation. Association mapping was performed in the genotyped portion of the collection (n = 381) and in each subpopulation (n = 204 and 174) independently via a single-locus mixed-linear model, and two multi-locus models, FarmCPU, and BLINK. A large number (195) of markers were significantly associated with resistance to at least one of 10 rust pathogen races evaluated, nine of which are key candidate markers for further investigation due to their detection via multiple models and/or their association with resistance to more than one pathogen race. The novel resistance loci identified will provide additional diversity available for use in wheat breeding

    Systematic identification of abundant A-to-I editing sites in the human transcriptome

    Full text link
    RNA editing by members of the double-stranded RNA-specific ADAR family leads to site-specific conversion of adenosine to inosine (A-to-I) in precursor messenger RNAs. Editing by ADARs is believed to occur in all metazoa, and is essential for mammalian development. Currently, only a limited number of human ADAR substrates are known, while indirect evidence suggests a substantial fraction of all pre-mRNAs being affected. Here we describe a computational search for ADAR editing sites in the human transcriptome, using millions of available expressed sequences. 12,723 A-to-I editing sites were mapped in 1,637 different genes, with an estimated accuracy of 95%, raising the number of known editing sites by two orders of magnitude. We experimentally validated our method by verifying the occurrence of editing in 26 novel substrates. A-to-I editing in humans primarily occurs in non-coding regions of the RNA, typically in Alu repeats. Analysis of the large set of editing sites indicates the role of editing in controlling dsRNA stability.Comment: Pre-print version. See http://dx.doi.org/10.1038/nbt996 for a reprin

    Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62

    Get PDF
    The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance
    • …
    corecore