123 research outputs found

    An Oral History of Marie O. Ronen, a One-Room Schoolteacher

    Get PDF
    A transcript of an oral history of Marie O. Ronen, a one-room schoolteacher for Research in Education 803/https://scholars.fhsu.edu/ors/1290/thumbnail.jp

    Elastase Release by Transmigrating Neutrophils Deactivates Endothelial-bound SDF-1α and Attenuates Subsequent T Lymphocyte Transendothelial Migration

    Get PDF
    Leukocyte trafficking to sites of inflammation follows a defined temporal pattern, and evidence suggests that initial neutrophil transendothelial migration modifies endothelial cell phenotype. We tested the hypothesis that preconditioning of human umbilical vein endothelial cells (HUVEC) by neutrophils would also modify the subsequent transendothelial migration of T lymphocytes across cytokine-stimulated HUVEC in an in vitro flow assay. Using fluorescence microscopy, preconditioning of HUVEC by neutrophils was observed to significantly reduce the extent of subsequent stromal cell–derived factor-1α (SDF-1α [CXCL12])-mediated T lymphocyte transendothelial migration, without reducing accumulation. In contrast, recruitment of a second wave of neutrophils was unaltered. Conditioned medium harvested after transendothelial migration of neutrophils or supernatants from stimulated neutrophils mediated a similar blocking effect, which was negated using a specific neutrophil elastase inhibitor. Furthermore, T lymphocyte transendothelial migration was inhibited by treatment of HUVEC with purified neutrophil elastase, which selectively cleaved the amino terminus of HUVEC-bound SDF-1α, which is required for its chemotactic activity. The reduction in T lymphocyte transendothelial migration was not observed using a different chemokine, ELC (CCL19), and was not reversed by replenishment of SDF-1α, indicating endothelial retention of the inactivated chemokine. In summary, transmigrating neutrophils secrete localized elastase that is protected from plasma inhibitors, and thereby modulate trafficking of other leukocyte subsets by altering the endothelial-associated chemotactic activities

    Nucleocytoplasmic transport: a thermodynamic mechanism

    Full text link
    The nuclear pore supports molecular communication between cytoplasm and nucleus in eukaryotic cells. Selective transport of proteins is mediated by soluble receptors, whose regulation by the small GTPase Ran leads to cargo accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear export. We consider the operation of this transport system by a combined analytical and experimental approach. Provocative predictions of a simple model were tested using cell-free nuclei reconstituted in Xenopus egg extract, a system well suited to quantitative studies. We found that accumulation capacity is limited, so that introduction of one import cargo leads to egress of another. Clearly, the pore per se does not determine transport directionality. Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic concentration in steady-state. The model shows that this ratio should in fact be independent of the receptor-cargo affinity, though kinetics may be strongly influenced. Numerical conservation of the system components highlights a conflict between the observations and the popular concept of transport cycles. We suggest that chemical partitioning provides a framework to understand the capacity to generate concentration gradients by equilibration of the receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures, plus Supplementary Material include

    Microvascular Endothelial Cells Exhibit Optimal Aspect Ratio for Minimizing Flow Resistance

    Get PDF
    A recent analytical solution of the three-dimensional Stokes flow through a bumpy tube predicts that for a given bump area, there exists an optimal circumferential wavenumber which minimizes flow resistance. This study uses measurements of microvessel endothelial cell morphology to test whether this prediction holds in the microvasculature. Endothelial cell (EC) morphology was measured in blood perfused in situ microvessels in anesthetized mice using confocal intravital microscopy. EC borders were identified by immunofluorescently labeling the EC surface molecule ICAM-1 which is expressed on the surface but not in the EC border regions. Comparison of this theory with extensive in situ measurements of microvascular EC geometry in mouse cremaster muscle using intravital microscopy reveals that the spacing of EC nuclei in venules ranging from 27 to 106 Όm in diameter indeed lies quite close to this predicted optimal configuration. Interestingly, arteriolar ECs are configured to minimize flow resistance not in the resting state, but at the dilated vessel diameter. These results raise the question of whether less organized circulatory systems, such as that found in newly formed solid tumors or in the developing embryo, may deviate from the optimal bump spacing predicted to minimize flow resistance

    MHC-IIB Filament Assembly and Cellular Localization Are Governed by the Rod Net Charge

    Get PDF
    Actin-dependent myosin II molecular motors form an integral part of the cell cytoskeleton. Myosin II molecules contain a long coiled-coil rod that mediates filament assembly required for myosin II to exert its full activity. The exact mechanisms orchestrating filament assembly are not fully understood., negatively-charged regions of the coiled-coil were found to play an important role by controlling the intracellular localization of native MHC-IIB. The entire positively-charged region is also important for intracellular localization of native MHC-IIB.A correct distribution of positive and negative charges along myosin II rod is a necessary component in proper filament assembly and intracellular localization of MHC-IIB

    Gene Expression Profile Identifies Tyrosine Kinase c-Met as a Targetable Mediator of Antiangiogenic Therapy Resistance

    Full text link
    PURPOSE: To identify mediators of glioblastoma anti-angiogenic therapy resistance and target these mediators in xenografts. EXPERIMENTAL DESIGN: We performed microarray analysis comparing bevacizumab-resistant glioblastomas (BRGs) to pre-treatment tumors from the same patients. We established novel xenograft models of anti-angiogenic therapy resistance to target candidate resistance mediator(s). RESULTS: BRG microarray analysis revealed upregulation versus pre-treatment of receptor tyrosine kinase c-Met, which underwent further investigation because of its prior biologic plausibility as a bevacizumab resistance mediator. BRGs exhibited increased hypoxia versus pre-treatment in a manner correlating with their c-Met upregulation, increased c-Met phosphorylation, and increased phosphorylation of c-Met-activated focal adhesion kinase (FAK) and STAT3. We developed two novel xenograft models of anti-angiogenic therapy resistance. In the first model, serial bevacizumab treatment of an initially responsive xenograft generated a xenograft with acquired bevacizumab resistance, which exhibited upregulated c-Met expression versus pre-treatment. In the second model, a BRG-derived xenograft maintained refractoriness to the MRI tumor vasculature alterations and survival-promoting effects of bevacizumab. Growth of this BRG-derived xenograft was inhibited by a c-Met inhibitor. Transducing these xenograft cells with c-Met shRNA inhibited their invasion and survival in hypoxia, disrupted their mesenchymal morphology, and converted them from bevacizumab-resistant to bevacizumab-responsive. Engineering bevacizumab-responsive cells to express constitutively active c-Met caused these cells to form bevacizumab-resistant xenografts. CONCLUSION: These findings support the role of c-Met in survival in hypoxia and invasion, features associated with anti-angiogenic therapy resistance; and growth and therapeutic resistance of xenografts resistant to anti-angiogenic therapy. Therapeutically targeting c-Met could prevent or overcome anti-angiogenic therapy resistance

    National and firm-level drivers of the devolution of HRM decision making to line managers

    Get PDF
    Multinational companies must understand the influences on responsibility for managing people so that they can manage talent consistently thus ensuring that it is transferable across locations. We examine the impact of firm and national level characteristics on the devolution of HRM decision making to line managers. Our analysis draws on data from 2335 indigenous organizations in 21 countries. At the firm level, we found that where the HR function has higher power, devolution is less likely. At the national level, devolution of decision making to line management is more likely in societies with more stringent employment laws and lower power distance

    Evaluation of presumably disease causing SCN1A variants in a cohort of common epilepsy syndromes

    Get PDF
    Objective: The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. Methods: We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. Results and Interpretation: We identified 8 known missense mutations, previously reported as path

    Specific Recognition of p53 Tetramers by Peptides Derived from p53 Interacting Proteins

    Get PDF
    Oligomerization plays a major role in regulating the activity of many proteins, and in modulating their interactions. p53 is a homotetrameric transcription factor that has a pivotal role in tumor suppression. Its tetramerization domain is contained within its C-terminal domain, which is a site for numerous protein-protein interactions. Those can either depend on or regulate p53 oligomerization. Here we screened an array of peptides derived from proteins known to bind the tetrameric p53 C-terminal domain (p53CTD) and identified ten binding peptides. We quantitatively characterized their binding to p53CTD using fluorescence anisotropy. The peptides bound tetrameric p53CTD with micromolar affinities. Despite the high charge of the binding peptides, electrostatics contributed only mildly to the interactions. NMR studies indicated that the peptides bound p53CTD at defined sites. The most significant chemical shift deviations were observed for the peptides WS100B(81–92), which bound directly to the p53 tetramerization domain, and PKCα(281–295), which stabilized p53CTD in circular dichroism thermal denaturation studies. Using analytical ultracentrifugation, we found that several of the peptides bound preferentially to p53 tetramers. Our results indicate that the protein-protein interactions of p53 are dependent on the oligomerization state of p53. We conclude that peptides may be used to regulate the oligomerization of p53
    • 

    corecore