592 research outputs found

    The BRST-invariant vacuum state of the Gribov-Zwanziger theory

    Get PDF
    We revisit the effective action of the Gribov-Zwanziger theory, taking into due account the BRST symmetry and renormalization (group invariance) of the construction. We compute at one loop the effective potential, showing the emergence of BRST-invariant dimension 2 condensates stabilizing the vacuum. This paper sets the stage at zero temperature, and clears the way to studying the Gribov-Zwanziger gap equations, and particularly the horizon condition, at finite temperature in future work.Comment: 18 pages, 4 .pdf figure

    The biosynthesis of the cannabinoids

    Get PDF
    Cannabis has been integral to Eurasian civilization for millennia, but a century of prohibition has limited investigation. With spreading legalization, science is pivoting to study the pharmacopeia of the cannabinoids, and a thorough understanding of their biosynthesis is required to engineer strains with specific cannabinoid profiles. This review surveys the biosynthesis and biochemistry of cannabinoids. The pathways and the enzymes’ mechanisms of action are discussed as is the non-enzymatic decarboxylation of the cannabinoic acids. There are still many gaps in our knowledge about the biosynthesis of the cannabinoids, especially for the minor components, and this review highlights the tools and approaches that will be applied to generate an improved understanding and consequent access to these potentially biomedically-relevant materials

    Detection of selection signatures in farmed coho salmon (Oncorhynchus kisutch) using dense genome-wide information

    Get PDF
    Animal domestication and artificial selection give rise to gradual changes at the genomic level in populations. Subsequent footprints of selection, known as selection signatures or selective sweeps, have been traced in the genomes of many animal livestock species by exploiting variation in linkage disequilibrium patterns and/or reduction of genetic diversity. Domestication of most aquatic species is recent in comparison with land animals, and salmonids are one of the most important fish species in aquaculture. Coho salmon (Oncorhynchus kisutch), cultivated primarily in Chile, has been subjected to breeding programs to improve growth, disease resistance traits, and flesh color. This study aimed to identify selection signatures that may be involved in adaptation to culture conditions and traits of productive interest. To do so, individuals of two domestic populations cultured in Chile were genotyped with 200 thousand SNPs, and analyses were conducted using iHS, XP-EHH and CLR. Several signatures of selection on different chromosomal regions were detected across both populations. Some of the identified regions under selection contained genes such anapc2, alad, chp2 and myn, which have been previously associated with body weight in Atlantic salmon, or sec24d and robo1, which have been associated with resistance to Piscirickettsia salmonis in coho salmon. Findings in our study can contribute to an integrated genome-wide map of selection signatures, to help identify the genetic mechanisms of phenotypic diversity in coho salmon

    Regulatory Processes That Control Haploid Expression of Salmon Sperm mRNAs

    Get PDF
    Objective  Various stages of mRNA processing are necessary for functionally important genes required during late-stage sperm differentiation. Protein–RNA complexes form that edit, stabilize, store, deliver, localize and regulate translation of sperm mRNAs. These regulatory processes are often directed by recognition sequence elements and the particular composition of the proteins associated with the mRNAs. Previous work has shown that the cAMP response element modulator (CREM), estrogen receptor-alpha (ERα) and forkhead box L2A (FOXL2A) proteins are present in late-stage salmon sperm. Here we investigate whether these and other regulatory proteins might control processing of mRNAs not expressed until the haploid stage of development. We also examine regulatory processes that prepare and present mRNAs that generate unique products essential for differentiating sperm (i.e. for flagellar assembly and function). Results  We provide evidence for potential sperm-specific recognition elements in 5′-untranslated regions (utrs) that may bind CREM, ERα, FOXL2A, Y-box and other proteins. We show that changes within the 5′-utrs and open reading frames of some sperm genes lead to distinct protein termini that may provide specific interfaces necessary for localization and function within the paternal gamete

    Phase diagram of insulating crystal and quantum Hall states in ABC-stacked trilayer graphene

    Full text link
    In the presence of a perpendicular magnetic field, ABC-stacked trilayer graphene's chiral band structure supports a 12-fold degenerate N=0 Landau level (LL). Along with the valley and spin degrees of freedom, the zeroth LL contains additional quantum numbers associated with the LL orbital index % n=0,1,2. Remote inter-layer hopping terms and external potential difference ΔB\Delta_{B} between the layers lead to LL splitting by introducing a gap % \Delta_{LL} between the degenerate zero-energy triplet LL orbitals. Assuming that the spin and valley degrees of freedom are frozen, we study the phase diagram of this system resulting from competition of the single particle LL splitting and Coulomb interactions within the Hartree-Fock approximation at integer filling factors. Above a critical value ΔLLc\Delta_{LL}^{c} of the external potential difference i,e, for ΔLL>ΔLLc|\Delta_{LL}| >\Delta_{LL}^{c}, the ground state is a uniform quantum Hall state where the electrons occupy the lowest unoccupied LL orbital index. For ΔLL<ΔLLc|\Delta_{LL}| <\Delta_{LL}^{c} (which corresponds to large positive or negative values of ΔB\Delta_{B}) the uniform QH state is unstable to the formation of a crystal state at integer filling factors. This phase transition should be characterized by a Hall plateau transition as a function of ΔLL\Delta_{LL} at a fixed filling factor. We also study the properties of this crystal state and discuss its experimental detection.Comment: 16 pages with 13 figure

    Fabrication of an autonomously self-healing flexible thin-film capacitor by slot-die coating

    Get PDF
    Flexible pressure sensors with self-healing abilities for wearable electronics are being developed, but generally either lack autonomous self-healing properties or require sophisticated material processing methods. To address this challenge, we developed flexible, low-cost and autonomously self-healing capacitive sensors using a crosslinked poly(dimethylsiloxane) through metal-ligand interactions processed into thin films via slot-die coating. These films have excellent self-healing properties, approximately 1.34 × 105 μm3 per hour at room temperature and 2.87 × 105 μm3 per hour at body temperature (37 °C). Similarly, no significant change in capacitance under bending strain was observed on these flexible thin-films when assembled on poly(ethyleneterephthalate) (PET) substrates; capacitors showed good sensitivity at low pressure regimes. More importantly, the devices fully recovered their sensitivity after being damaged and healed, which is directly attributed to the rapid and autonomous self-healing of the dielectric materials

    Interactions of local climatic, biotic and hydrogeochemical processes facilitate phosphorus dynamics along an Everglades forest-marsh gradient

    Get PDF
    Ecosystem nutrient cycling is often complex because nutrient dynamics within and between systems are mediated by the interaction of biological and geochemical conditions operating at different temporal and spatial scales. Vegetated patches in semiarid and wetland landscapes have been shown to exemplify some of these patterns and processes. We investigated biological and geochemical factors suggested to contribute to phosphorus (P) movement and availability along a forest-marsh gradient in an Everglades tree island. Our study illustrated processes that are consistent with the chemohydrodynamic nutrient (CHNT) hypothesis and the trigger-transfer, pulse-reserve (TTPR) model developed for semiarid systems. Comparison with the TTPR model was constructive as it elaborated several significant patterns and processes of the tree island ecosystem including: (1) concentration of the limiting resource (P) in the source patch (High Head which constitutes the reserve) compared with the resource-poor landscape, (2) soil zone calcite precipitation requiring strong seasonality for evapotranspiration to promote conditions for secondary soil development and calcium phosphate reprecipitation, (3) rewetting of previously dry soils by early wet season precipitation events, and (4) antecedent conditions of the source patch, including landscape position that modulated the effect of the precipitation trigger. Thus, our study showed how water availability drives soil water P dynamics and, potentially, stability of mineral soil P in this tree island ecosystem. In landscapes with extensive water management, these processes can be asynchronous with the seasonality of hydrologic dynamics, tipping the balance between a sink and source of a limiting nutrient
    corecore