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Abstract 

Objective: Various stages of mRNA processing are necessary for functionally important genes required during late-
stage sperm differentiation. Protein–RNA complexes form that edit, stabilize, store, deliver, localize and regulate trans-
lation of sperm mRNAs. These regulatory processes are often directed by recognition sequence elements and the 
particular composition of the proteins associated with the mRNAs. Previous work has shown that the cAMP response 
element modulator (CREM), estrogen receptor-alpha (ERα) and forkhead box L2A (FOXL2A) proteins are present in 
late-stage salmon sperm. Here we investigate whether these and other regulatory proteins might control processing 
of mRNAs not expressed until the haploid stage of development. We also examine regulatory processes that prepare 
and present mRNAs that generate unique products essential for differentiating sperm (i.e. for flagellar assembly and 
function).

Results: We provide evidence for potential sperm-specific recognition elements in 5′-untranslated regions (utrs) that 
may bind CREM, ERα, FOXL2A, Y-box and other proteins. We show that changes within the 5′-utrs and open reading 
frames of some sperm genes lead to distinct protein termini that may provide specific interfaces necessary for locali-
zation and function within the paternal gamete.

Keywords: 5′-untranslated regions, Gene expression, Localization motifs, Messenger RNA, Posttranscriptional 
processing, Recognition elements, Spermiogenesis
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Introduction
Posttranscriptional processes can shape the presenta-
tion of mRNAs through the addition, subtraction and 
shuffling of specific blocks of sequence. The large num-
ber of variants (and activities) generated from just one 
gene, the cAMP response element modulator (CREM), is 
an excellent example of post-transcriptional modulation 
[1]. Intrinsic signal motifs borne in regions throughout 
mRNA bodies are important for directing mRNA pro-
cessing within different cell types and during different 
stages of development. RNA-binding protein (RBP)–
mRNA interactions can specify functional and subcel-
lular localization units as part of a larger regulatory 
network [2]. In late-stage, transcriptionally quiescent 
sperm cells, recognition elements within various mRNAs 

provide specific signals for interactions with RBPs and 
RNA cofactors necessary for stability, storage, transport, 
localization and subsequent translation [3–6].

As well, during differentiation, post-transcriptionally 
reconfigured and sperm-specific gene products often 
present distinct interfaces that enable interaction with 
structures unique to the male germ cell, such as the axo-
neme, outer dense fibers (ODFs), and the mitochondrial 
and fibrous sheaths [7]. Changes in the presentation of 
N- and C-termini permit enzymes and signal transduc-
ers to associate with these various substructures and per-
form functions that may be unique from their somatic 
counterparts [8–10 and references within each].

Most of our knowledge of these various processes 
has come from mammalian studies. Recent RNAseq 
and assembly of a salmon sperm transcriptome [11] 
prompted us to investigate whether similar mechanisms 
of mRNA regulation are evident in teleost fish.

We discovered potential signal elements of differ-
ent types and configurations within the 5′-untranslated 
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regions (utrs) of post-meiotically-expressed mRNAs that 
may recognize and interact with regulatory proteins. 
These interactions could prepare sperm mRNAs for 
stage-specific storage, localization and/or translation. We 
provide potential evidence that changes within 5′-utrs 
and open reading frames of some sperm genes can lead 
to distinct protein N- and C-termini that may provide the 
interfaces necessary for localization and function within 
the germ cell.

Main text
Methods
Identification and characterization of RNA recognition motifs
Sperm sampling, RNA extraction and isolation, and tran-
script sequencing, assembly and annotation have been 
previously described in detail [11]. The salmon sperm 
transcriptomic sequences are publicly available [12]. We 
selected genes, such as ida2, odf3b, stpg2, based on the 
association of their products with flagella substructures, 
or for their potential to be involved in powering flagellar 
motion (e.g. AKs [13]; ERα [11]). The 5′-end regions of 
the sperm transcripts were examined in alignments with 
somatic isoforms in CLUSTALW [14].

We preliminarily examined the 5′-utrs with MatInspec-
tor [15]. Sequence motifs presumed or demonstrated to 
bind CREB/CREM, ER and FOXL2 in other fish species 
were also identified [16, 17 and references in both]. Iden-
tification of potential recognition elements in the selected 
sperm 5′-utrs was then performed manually. Other ele-
ments with unknown binding partners were also identi-
fied that were present across the sequences examined 
and/or presented as duplicated sequence within individ-
ual 5′-utrs. CREB and CREM are highly homologous and 
their various isoforms bind the CRE, but do so in combi-
nation with distinct co-activators [1, 18].

Identification of potential protein sperm‑specific localization 
motifs
Differences in the domains and specific motifs present in 
the somatic and germ-cell isoforms of AK8 and GnRH-
II-R were determined in MotifScan [19].

Verification of transcript sequences by comparison 
to genome
Assembled transcripts were mapped to the Atlantic 
salmon reference genome [20] with BLAT (-ooc = 11.ooc, 
-fine [21]) or Geneious v8.1.7 (map-to-reference, max 
gap = 50,000 bp [22]) with manual correction. Portions of 
the fragments not mapping to reference in original analy-
sis were placed using Blastn [23]. Reference Sequence 
(RefSeq) transcript coordinates were obtained from the 
NCBI’s genome annotation (Release 100) for Atlantic 
salmon [24].

Results and discussion
Transcriptional activity in post-meiotic germ cells is 
considered completely arrested following chromatin 
reorganization and compaction of the genome [5, 18]. 
During this period, translation of many mRNAs may 
be delayed for functions required during later stages of 
sperm differentiation. Several different processes are 
employed that link transcription of these genes with 
subsequent mRNA processing and delayed translation 
[3–6]. Notable among these are the groups of mRNAs 
that are transcriptionally upregulated by the Y-box [25] 
and CREM [18] proteins before transcriptional arrest.

Interestingly, there is evidence that signal motifs 
residing within the untranslated regions (utrs) of some 
of these mRNAs may also serve as recognition bind-
ing elements for the CREM and Y-box proteins [26], as 
well as for many other regulatory proteins and RNAs 
[3–6, 27–29]. Once transcribed, the subsets of mRNAs 
important for late-stage sperm development are bound 
within RNA–protein complexes, stored, transported 
and localized to await disassembly and translation. 
Much is still to be learned about all of the compo-
nents bound within these complexes and the particu-
lar interactions that impart control of these regulatory 
processes.

We examined the 5′-utrs of genes required in later 
stages of salmonid spermatid differentiation and found 
potential motifs representing Y-box binding elements. 
Eight of the twelve 5′-utrs we examined possessed the 
Y-box RNA-binding recognition motif: five different 
examples are shown in Fig. 1, plus two adenylate kinases 
(ak8) (Fig. 2) and one GnRH-II-receptor (gnrh2r) (Fig. 3). 
(A more comprehensive presentation of the ak8 5′-utrs is 
shown in Additional file 1). The 5′-utrs of stpg2 (Fig. 1), 
a testis and one sperm ak8 (Fig. 2; Additional file 1) and 
estrogen receptor-alpha (erα) (Additional file  2) do not 
appear to present Y-box recognition motifs. These results 
are based on the following consensus sequence: [TAC]
[CA]CA[TC]C[ACT], where degenerate sites are brack-
eted [26].

For CREB/CREM, we identified several near-perfect 
palindromic TGA CGT CA elements [18] and many half-
site motifs (TGACG or CGTCA) embedded in most of 
the 5′-utrs we examined. Only the 5′-utrs of spef2 (Fig. 1) 
and the sperm ak8s (Fig.  2; Additional file  1) do not 
contain sequence that resembles the palindromic CRE. 
Also, we wondered if factors such as ERα and FOXL2A, 
thought to bind RNA [16, 30], might be implicated in 
stage-specific processing and determined several mRNAs 
could bind FOXL2A (Figs.  1, 2 and 3) and ERα (Fig.  3; 
Additional file 2). Other signal elements repeated within 
or shared among the 5′-utrs were also identified (Figs. 1, 
2 and 3). The spacing, orientation and sequence of these 
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repeated motifs may specify regulatory protein binding 
sites.

We discovered that some genes expressed in the salmon 
sperm present utrs that diverge completely from their 
somatic counterparts. Differences in the utrs of various 
sperm mRNAs were verified by exon/intron examination 
of genomic sequences (Additional file  3). For example, 
we observed differences between the 5′-utrs borne by 
odfb3 in the testis and those within mature sperm. The 
sequence we present in Fig.  1 is expressed exclusively 
in the sperm odfb3 5′-utr. In 5′-utrs of odfb3 expressed 
in the testis (e.g. GenBank: GEGX01040900), we found 
no elements that follow the Y-box binding recognition 
sequence. This example suggests that regulation of the 
presentation of different 5′-utrs during specific stages of 
sperm maturation plays a role in the processing of these 
transcripts.

Adenylate kinases (AKs) play an important role in 
differentiating sperm by generating ATP (and AMP) 
and, in concert with other enzymes such as PDEs and 
sACs, in distributing adenylate fuel throughout the fla-
gella [13]. We found three sperm ak8 genes that each 

present different 5′-utrs (Fig.  2a). In this analysis, we 
include the 5′-utr of a transcript that encodes AK8 
from somatic tissues, including the testis. It is impor-
tant to note that the testis 5′-utr is much longer than 
for the sperm ak8s and could generate a protein with a 
N-terminal that is 32 aar longer than the longest sperm 
isoform (Additional file 1). We have not determined if 
the mRNA is present in both testicular germinal and 
somatic cells, but the long 5′-utr may be part of a mech-
anism that serves to sequester the mRNA in sperm cells 
for utilization at later stages of differentiation.

If translated, the three sperm AK8 proteins would be 
shorter, and in two cases, the N- and C-termini would 
differ completely, from the somatic isoforms (Fig.  2b, 
Additional file  1). There are potential phosphorylation 
and myristoylation motifs in the sperm AK8 protein 
not present in the somatic isoform. The differences in 
the termini of the sperm AK isoforms might provide 
unique interfaces necessary for localization to specific 
structures within the sperm flagella. The eight known 
mammalian sperm AKs are found in association with 
mitochondria, the axoneme or ODFs, but the structural 

odf3b (outer dense fiber protein-3B) from GEGY01068027 

CAACTAAACAGTCGTCACACTGATTTTGCTCAAGAATTTAAGACATTTTAATGCGCAGCTGAGCACATCCCATTATGACATAAATTATGTGCACACCACTATTGCACC
ACAGTTAGTTTGGAACACCAACCAAACAGACCAACGAGCTCCAGACACCAGCACTAACTCACCAGCTCTAAAATGTTAGGCAGTTACCCAAATTAAGGCAATCTGCTT
TCCACTATCCTAAAAAGGCAGTTTTTAATGAAACACTATTGGTATGAGCATCCAGCAAGTTTAAATTGACTCTAATTCCATCTGTCCTTGTCCACAGACTAATCATG

akap9 (A-kinase anchoring protein-9) from GEGY01161385 

CGACGTTCCCAAAGGGGCGTAGCTGCGGAAAACAGCCACCTACGTGACGTCATCACAATCAGTCTCGTGTTTACGTGGAGAACATGGCGGCGGAGATGTGGCTGTAGC
AAGGAGTCTGCTCCTAATGCGAGTTCGTCGCAGTGATTTGACACCATTACCAAACAAATGTAATGTCAACAGACAGACACTTTCCCCACAGACTCTGGGCGTATTCGC
TGACACTTCGCATGAAGCCCCTTTCCTCTTCTCTCAGCCACAGGGACAACGGTAATG

ida2 (dynein-1-beta heavy chain/flagella inner arm) from GBRB01071373 

AAGCGCGCCTCTACAAAAGCCGGAGAGTGGAGCCAACTACCATAGAAGAAACCGATAAAGTTGCCTGGCCAGTTTACTTCAAAACTATTTTATCACGCCATTTCGTAT
CTAGTGGTTTTAGAGTATGTAAGAATAAACAGTATTGATGTAGGTGTTATAGCTAGGTAAATCATTAAACACGTGGAGTTGCAAACAGTTATTACCTGACGGAAGCTG
ACGACAAACATCAGCGGCTGGTTCGTTGGCCATG

spef2 (flagellar protein-2) from GBRB01061724 

ACTATGGCAACGACACACCTTGTGGTTGTTGTCAATTCTCCCCTAGCTAGCCAGAACAAGTTAAGAGCTATCATGTAGTTTAATACTTATAATACTTAGCTACACAAC
AATAACGAAAACGTCAAAATG

stpg2 (sperm-tail PG-rich repeat-containing protein-2) from GEGY01022996 

ATTGTCCTAAATAAAGGGGTCCCCCTCCGTCTGATATTGCCTTTAAATGAGGTGACAAACAATTATCATCGTAATAACTGATACATTACAGAAGTTAATGTTTAGCTT
TTTGCATGTTAGGTTCTTTAACAACGGTGCTATAATGAATAGCCTTTAGAATCATTGTAAAGTTCTATTTCCGTAATGAAACGTGACTCCAAACTTGCGTAGCCAGTG
TCTAAGCAACGACGCACAATAACATTGTAGCGCCGAAAATAAATAATATTTTTTGGCTCCATTAGGATTTTTTTACCAACTCCAAATTACTGAGGGAAACTACGTCTA
CGAGGATTTCATTTGACATTTTACCGAGTTGTTTTGTCTTCCGAGTCATTGCTGGTGAAAATG

inha (inhibin alpha)  from GBRB01059889 

ACAATAACATAGGGCTCTCTCTCACTCCCTTTTTCCCCAGTGTCTAGATAGGCATGGGTAGGAGGCAATATTCCATGACAAAACAATTGATAAGAGAGACACAGTGCT
CTGCATTGGCAGAGATGGAACCTCCAAATAATGCAGGACTTCATTGACACCACTTGCCCACCGGCTCAGGACAGAGAAGGATCTACACTACTTCACTTCATCTACTAG
AAGTTCTGGCACAATCAATTGACCCATTTGGTCACCTTACCAATTATTAGACAGGGATATTTGACCTACTTGGATTACTCAAACTCAAAGCAATTTTCCACCTCGATC
TACATGCTTCACAACCCTCCTCTATAGACTGAAGAGATCTGAACCATG

Fig. 1 Identification of various different mRNA-processing control signals embedded within 5′-utrs of selected genes. Positions of recognition 
motifs for CREM, FOXL2A or Y-box are highlighted in yellow, blue or green, respectively. Other potential motifs with unknown binding partners 
are based on derivations of ACAA[CA]CA (purple), while others are more specific and duplicated at least twice within most 5′-utrs (purple and 
underlined)
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determinants for their specific localization are still 
unclear [13].

We also assume the characteristics of functional 
sperm AK8s would differ from that for the somatic iso-
forms. AK8 has two AK domains (see XP_014030300 
for salmon, CDQ66442 for trout, or NP_001029046 for 
murine somatic forms), but the salmon sperm AK8 iso-
forms retain only one ATP-AMP binding pocket due to 
their shorter C-termini.

The 5′-utr of the sperm GnRH-II receptor (gnrh2r) 
(GenBank: GEGY01074481) differs completely from the 
salmon somatic isoform (GenBank: XM_014201129) 
(Fig. 3a). The 5′-utr in the sperm gnrh2r diverges from 
the somatic receptor in a region immediately preceding 
its start codon. The upstream portion contains a vari-
ety of potential binding motifs that may be inextricable 
for sperm-specific posttranscriptional processing. Also, 
despite the extended length of the sperm 5′-utr, the 
start codon is more downstream, leading to a shorter 
N-terminal in the translated product in comparison 

to the somatic isoform (Fig.  3b). The sequence that 
encodes the seven-transmembrane receptor is intact 
(data not shown), but the loss of N-terminal residues 
in the sperm isoform may free it to interact with spe-
cific structures in the sperm, or change the ligand affin-
ity, selectivity or signaling function of the receptor for 
germ cell-specific activity.

We also found erα expressed in the sperm library. 
Analysis of fifteen other salmon libraries revealed 
5′-utrs of variable lengths, with the longest borne in the 
liver library (Additional file 2). It is difficult to make any 
conclusions on the regulatory components of the erα 
5′-utr in the sperm vis-à-vis other tissues where it is 
expressed, but potential for CREB/CREM and ER activ-
ity exists (Additional file 2).

Perhaps the most intriguing feature of the erα 5′-utr 
is that it contains two duplicate blocks of RNA, each 
approximately 47 nts in length (Additional file 2). These 
may contain motifs that recognize regulatory proteins 
that partition to only the liver, testis or sperm.

a 
testis ak8 (GEGX01027391)  ////CTGTGGTCTCAATTGTCTTGAGGAGTCGAACCAACAATCAACGAGCGTTCTGACGTTGCTGGGCAACATGACACCAATTACGTTTTCC    

sperm ak8 (GEGY01063064)  -------------------------------------------------ACTGCAAATCACCTTATTGCAATGGATGAAACTGCAAAACCCCT
sperm ak8 (GEGY01063060)  -----------AAATAATTTAGTTTTCCAAAAGCCAGTTCCAAACTAAGACTGCAAATCACCTTATTGCAATGGATGAAACTGCAAAACCCCT
sperm ak8 (GEGY01063063)  -----------AAATAATTTAGTTTTCCAAAAGCCAGTTCCAAACTAAGACTGCAAATCACCTTATTGCAATGGATGAAACTGCAAAACCCCT
GEGX01027391       TTAGCAACGTGTGAATGCGTCTTGGCAAGCGACTTGGATTCATGTTATAAGCT--GACTGCAAATCACCTTATTGCAATGGATGAAACTGCAAAACCCCT
                                                                           ********************************************
                            1                                                               2    3 
GEGY01063064       AAGAATTCCACCTGAAATGGCTATTTATGCAGAGAAGCATGAAATATTTGATTTAGTCCAGATCTGTAACCTGACTACCGGTTTGACGAGGGAGTACAGC
GEGY01063060       AAGAATTCCACCTGAAATGGCTATTTATGCAGAGAAGCATGAAATATTTGATTTAGTCCAGA-------------------------------------- 
GEGY01063063       AAGAATTCCACCTGAAATGGCTATTTATGCAGAGAAGCATGAAATATTTGATTTAGTCCAGA-------------------------------------- 
GEGX01027391       AAGAATTCCACCTGAAATGGCTATTTATGCAGAGAAGCATGAAATATTTGATTTAGTCCAGA--------------------------------------      

**************************************************************

                         3       2                                                  4 
GEGY01063064       TACAACCGGAAGTGACTCTTTGTAGCAGGTTAGACATTGGTGACGAATCTTATGGTTGATAAGCCAGAGGATCCCATCCAGTATCTAATCGTTCTACTCA
GEGY01063060       ----------------------------------CATTGGTGACGAATCTTATGGTTGATAAGCCAGAGGATCCCATCCAGTATCTAATCGTTCTACTCA
GEGY01063063       ----------------------------------CATTGGTGACGAATCTTATGGTTGATAAGCCAGAGGATCCCATCCAGTATCTAATCGTTCTACTCA
GEGX01027391       ----------------------------------CATTGGTGACGAATCTTATGGTTGATAAGCCAGAGGATCCCATCCAGTATCTAATCGTTCTACTCA

******************************************************************

                                          4                   1 
GEGY01063064       AAAGGGGCAGTGTTGAGGTACCCAGAGTGATGTTGTTAGGTCCACCTGCATCAGGGAAAAGAACTGTTCAGATCATGCTGCGCTTGCCTGGGTCAAAATC 
GEGY01063060       AAAGGGGCAGTGTTGAGGTACCCAGAGTGATGTTGTTAGGTCCACCTGCATCAGGGAAAAGAACTGTTCAGATCATGCTGCGCTTGCCTGGGTCAAAATC 
GEGY01063063       AAAGGGGCAGTGTTGAGGTACCCAGAGTGATGTTGTTAGGTCCACCTGCATCAGGGAAAAGAACTGTT-------------------------------- 
GEGX01027391       AAAGGGGCAGTGTTGAGGTACCCAGAGTGATGTTGTTAGGTCCACCTGCATCAGGGAAAAGAACTGTT--------------------------------      

********************************************************************

GEGY01063064       TGTGCTGTGATGTGCACACAAAAAAGACTGCATCTGTACCAGGCCAGGAAGCTGTGTGAACACACTCAAGTGATCCATATTACAGACAGCAACATTCTGC
GEGY01063060       TGTGCTGTGATGTGCACACAAAAAAGACTGCATCTGTACCAGGCCAGGAAGCTGTGTGAACACACTCAAGTGATCCATATTACAGACAGCAACATTCTGC
GEGY01063063       ------------------------------------------GCCAGGAAGCTGTGTGAACACACTCAAGTGATCCATATTACAGACAGCAACATTCTGC
GEGX01027391       ------------------------------------------GCCAGGAAGCTGTGTGAACACACTCAAGTGATCCATATTACAGACAGCAACATTCTGC

********************************************************//

b  
sperm AK8 (GEGY01063064)  ----------------------------MCTQKRLHLYQARKLC//FIPSRGTCIASHQSPWQRIR 
sperm AK8 (GEGY01063060)  ----------------------------MCTQKRLHLYQARKLC//FIPSRGTCIASHQSPWQRIR 
sperm AK8 (GEGY01063063)  ------------MDETAKPLRIP//VMLLGPPASGKRTVARKLC//FIPSRGTCIASHQSPWQRIR  
testis AK8 (GEGX01027391) MTPITFSLAT//MDETAKPLRIP//VMLLGPPASGKRTVARKLC//FIPSRVFFLEMTDDVAIERV//NADQDPHTVFESLESRLVGRLQNDA 
                                                                 ************

Fig. 2 A comparison of the sperm and testis AK8-encoding transcripts and their distinct translated termini. a Potential binding elements for CREM 
(yellow), FOXL2A (blue) and Y-box (green) are presented. Various different recognition motifs that are duplicated throughout mRNA bodies may 
bind unknown regulatory proteins (purple). Note the 5′-end and internal differences between the sequences. Different translation start codons 
(ATG; bold green) are potentially engaged by each transcript. Hatched lines indicate sequence continues upstream or downstream. b Different 
N- and C-termini in sperm AK8 proteins could result from presentation of alternative start and stop codons (see Additional file 1 for more detail). 
Potential phosphorylation and myristoylation motifs in the sperm AK8N- and C-termini are highlighted in bold. Hatched lines indicate breaks in 
aligned residue sequences
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Limitations
The recognition elements we present for CREB/CREM, 
ERα and FOXL2A are based on DNA-binding studies. 
Although some evidence exists that these proteins bind 
RNA, the sequences they interact with are completely 
unknown. The various duplicated sequences we identify 
within the 5′-utrs may serve as important targets for pro-
teins involved in regulating mRNA processing. Similar 
duplicated elements are found throughout the 5′-utrs of 
late-stage mammalian sperm mRNAs (Additional file 4). 
Future research will reveal if similarities exist within 
the composition, binding contexts and interactions of 
the proteins that regulate expression of these essential 
mRNAs.

Additional files

Additional file 1. A comparison of the sperm and testis AK8-encoding 
transcripts and their protein products. a Different recognition motifs 
embedded within 5’-utrs of sperm and testis ak8 transcripts are presented: 
CREB/CREM (yellow), FOXL2A (blue) and unknown binding partners 
(purple). Three canonical Y-box motifs are present upstream of the start 

codons of two sperm ak8 transcripts (green blocks). (Also see Fig. 2). Note 
the 5’-end and internal differences between the sequences. Different start 
codons (ATG; bold green) are potentially engaged by each transcript. b 
Insertion of multiple short exons in the coding region of the sperm tran-
script (see Additional file 3) could result in a truncated C-terminal (double 
stop codons in red). c Divergence of utrs expressed by late-stage sperm 
genes can change the translated N- or C-terminals from those presented 
by their somatic counterparts. Potential PKC phosphorylation ([ST]-X-[RK]: 
positions 3–6) and myristoylation (GTCIAS: see start of distinct C-termini) 
motifs in the sperm AK8 proteins are shown that are not present in the 
somatic isoform (bold). Hatched lines indicate sequence continues 
upstream or downstream.

Additional file 2. Alignment and characterization of erα 5’-ends. a Align-
ments of erα transcripts from various libraries revealed 5’-utrs of variable 
lengths. We provide examples of 5’-utrs of differing lengths from the liver 
(GenBank:GBRB01032530), the testis (GenBank:GEGX01021095) and the 
sperm (GenBank:GEGY01192247). b The erα 5’-utr contains two duplicate 
blocks of RNA that each possess a less homologous stretch of 25 nts 
(85.7%) (underlined), followed by a stretch of 22 nts that are essentially 
identical (bold). Note that the upstream duplicated block of RNA may only 
be present in the liver erα 5’-utr. Positions of potential EREs (underlined) 
and CREs (yellow) are also presented. Two interesting estrogen (or other 
hormone) response element configurations are located immediately 
downstream of the start codon (ATG; bold). Two duplicated elements of 
RNA (purple) could also serve as binding motifs for FOXL2A.

Additional file 3. Genome coordinates for RefSeq and assembled tran-
scripts. a Genomic coordinates of the 5’-utr for transcripts of interest. b 
Genomic coordinates for full transcripts including 5’-utr, exons and 3’-utr.

                                                                                                                     1

a              AAAAAAAAATGTACAAAAACTGTACCACCACACAAAAGAGCACTTGGCAAGTGGGAGGGAAAAGGGGCAGGTGTTCTGGCACAGGTAGACCCATATTGTG
                                                                    ½ ERE             ½ ERE   ½ ERE         ½ ERE            
sperm gnrh2r    CACGCGCCTGCAAATCAGTATTGTCAAATAATCTGTAGTCTATGCTTTTGATGCACCAGGTTTCTTTTCAGCACTTCAGCACCTGCGTGTATGGACAGCT 
GEGY01074481    CCCCTCCCATGTCTATTTTTGATGAACGCAAGTAGTGGGATAGAGTGGTCTGTTGAACTGCACTGTAGCTGCAGAACCTATTTCACCAACCTCGGAGCCC       

                          2      2                                              1         3 
XM_014201129    ----------------------------------------ATATGTTGTAATCTAATTGATCAACATCTCAACCAAATATTACCCAATTATCCACGTTGA
GEGY01074481    GACAAGGATTGGACATTGGATCATTTTTTGAAACTCCCATGGATATTGCGATATA-CAAAAAGAAAACTGAGTGAAAGATGGATCAACCGAA-ACGCTGA

** *** ** ** * * * ** * *** ** *** *** ***
                                                                                   4                        
XM_014201129    AATTAT-GTGGTGTAGCC-----AGTGGGTACGCTTCTCTC-TGACGAGTTGGTTGGTGGACTGTGG--ACTGTGTATCAGTCGCATGTGGTCTTATTTT
GEGY01074481    AATTGTTGTAGGCCTACTTTGGAGACGAATACGTAATTTTGGTTTTCAATTATCTTTCATGCTGCGGCAACTGAAGATAAAACACATAT-----TTCATT

**** * ** * * * **** * * * * ** * *** ** **** ** * * *** * * **
                                        2        4                  3 
XM_014201129    ACATTAATAATCACTTATACTATCCAGAGCAATGTAGAATATCTGACGACGCATAAAAACTTTGATGTGTATATGATAATAATGTATGTAATCACGATAA
GEGY01074481    GCATTACGGCTTAGCTGTTCAATT-GGAATAGGCAACATTGTATCGGAGAGAAAGTGTACTTTGTTGCGTAT-TGTGAGGAATGCGCGCATTCCAAGTGA

***** * * * * * ** ** * * * * * * * * ****** ** **** ** * **** * * ** * *

XM_014201129    --TGACATACATGTTTTACTTTGTCATCTACAGTCATTCATATAAACCTTGTCTTTTCCAACACAGG-ATGTCTGGCAACCTGTCCCTCCTGAGGCCTCC
GEGY01074481    GTTGAGCGTTAAACAAGTATTCACAGGGCAATGTGTTTGGAGAGGGTGTTGACAGCTCTGGAGTGGGGATGTCTGGCAACCTGTCCCTCCTGAGGCCTCC

*** * ** * ** ** *** * ** ** ********************************

XM_014201129    CTTAGTGGGTGCCACCAGGTCAATGCAACCCGCCCTCTCCAACATGTCCCAGTTTCCCCCTCTGGTTGACTGGGAGGCGCCCACCTTCACCCGAGCCGCC
GEGY01074481    CTTAGTGGGTGCCACCAGGTCAATGCAACCCGCCCTCTCCAACATGTCCCAGTTTCCCCCTCTGGTTGACTGGGAGGCGCCCACCTTCACCCGAGCCGCC

****************************************************************************************************//

b
somatic GnRH-II-R (XP_014056604)   MWCSQWVRFSLTSWLVDCGLCISRMWSYFTLIITYTIQSNVEYLTTHKNF 

somatic GnRH-II-R (XP_014056604)   DVYMIIMYVITIMTYMFYFVIYSHSYKPCLFQHRMSGNLSLLRPPLVGAT
sperm GnRH-II-R (GEGY01074481)     ----------------------------------MSGNLSLLRPPLVGAT

****************

somatic GnRH-II-R (XP_014056604)   RSMQPALSNMSQFPPLVDWEAPTFTRAAQFRVGATLILFLFAACSNLALL
sperm GnRH-II-R (GEGY01074481)     RSMQPALSNMSQFPPLVDWEAPTFTRAAQFRVGATLILFLFAACSNLALL

**************************************************//// 

Fig. 3 A comparison of the somatic and sperm gnrh2r 5′-utrs and coded N-termini. a The sperm gnrh2r 5′-utr is longer and different from the 
somatic isoform. The sperm 5′-utr contains potential CREM (yellow), FOXL2A (blue) and Y-box (green) binding elements. Repeated core sequences 
are shown for putative EREs (underlined) and other elements (purple) that could serve as recognition motifs for unknown binding partners. Note 
the different start codon positions (ATG; green). A potential overlapping FOXL2A/Y-box element may exist near the start codon of the somatic 
gnrh2r. b The shorter sperm GnRH-II-R N-terminal exposes a N-linked glycosylation site (NLSL; bold) that is internal to the somatic isoform. Hatched 
lines indicate sequence continues downstream
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 2. Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO. Diverse RNA-
binding proteins interact with functionally related sets of RNAs, suggest-
ing an extensive regulatory system. PLoS Biol. 2008;6(10):e255. https ://
doi.org/10.1371/journ al.pbio.00602 55.

 3. Chennathukuzhi V, Morales CR, El-Alfy M, Hecht NB. The kinesin KIF17b 
and RNA-binding protein TB-RBP transport specific cAMP-responsive ele-
ment modulator-regulated mRNAs in male germ cells. Proc Natl Acad Sci 
USA. 2003;100(26):15566–71.

 4. Idler RK, Yan W. Control of messenger RNA fate by RNA-binding proteins: 
an emphasis on mammalian spermatogenesis. J Androl. 2012;33(3):309–
37. https ://doi.org/10.2164/jandr ol.111.01416 7.

 5. Kleene KC. Connecting cis-elements and trans-factors with mechanisms 
of developmental regulation of mRNA translation in meiotic and haploid 
mammalian spermatogenic cells. Reproduction. 2013;146(1):R1–19. https 
://doi.org/10.1530/REP-12-0362.

 6. Cullinane DL, Chowdhury TA, Kleene KC. Mechanisms of translational 
repression of the Smcp mRNA in round spermatids. Reproduction. 
2015;149(1):43–54. https ://doi.org/10.1530/REP-14-0394.

 7. Inaba K. Molecular architecture of the sperm flagella: molecules for motil-
ity and signaling. Zoolog Sci. 2003;20(9):1043–56.

 8. San Agustin JT, Witman GB. Differential expression of the C(s) and 
Calpha1 isoforms of the catalytic subunit of cyclic 3′,5′-adenosine 
monophosphate-dependent protein kinase testicular cells. Biol Reprod. 
2001;65(1):151–64.

 9. Krisfalusi M, Miki K, Magyar PL, O’Brien DA. Multiple glycolytic enzymes 
are tightly bound to the fibrous sheath of mouse spermatozoa. Biol 
Reprod. 2006;75(2):270–8.

 10. Danshina PV, Geyer CB, Dai Q, Goulding EH, Willis WD, Kitto GB, McCarrey 
JR, Eddy EM, O’Brien DA. Phosphoglycerate kinase 2 (PGK2) is essential for 
sperm function and male fertility in mice. Biol Reprod. 2010;82(1):136–45. 
https ://doi.org/10.1095/biolr eprod .109.07969 9.

 11. von Schalburg KR, Gowen BE, Leong JS, Rondeau EB, Davidson WS, 
Koop BF. Subcellular localization and characterization of estrogenic 
pathway regulators and mediators in Atlantic salmon spermatozoal cells. 
Histochem Cell Biol. 2018;149(1):75–96. https ://doi.org/10.1007/s0041 
8-017-1611-3.

 12. Transcriptome Shotgun Assembly Sequence Database. http://www.ncbi.
nlm.nih.gov/genba nk/tsa/. Accessed 23 May 2016.

 13. Vadnais ML, Cao W, Aghajanian HK, Haig-Ladewig L, Lin AM, Al-Alao O, 
Gerton GL. Adenine nucleotide metabolism and a role for AMP in modu-
lating flagellar waveforms in mouse sperm. Biol Reprod. 2014;90(6):128, 
1–14. https ://doi.org/10.1095/biolr eprod .113.11444 7.

 14. Biology Workbench. http://workb ench.sdsc.edu. Accessed 23 May 2016.
 15. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, 

Frisch M, Bayerlein M, Werner T. MatInspector and beyond: promoter 
analysis based on transcription factor binding sites. Bioinformatics. 
2005;21(13):2933–42.

 16. von Schalburg KR, Yasuike M, Davidson WS, Koop BF. Regulation, expres-
sion and characterization of aromatase (cyp19b1) transcripts in ovary and 
testis of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 
B Biochem Mol Biol. 2010;155(2):118–25. https ://doi.org/10.1016/j.
cbpb.2009.10.015.

 17. von Schalburg KR, Gowen BE, Rondeau EB, Johnson NW, Minkley DR, 
Leong JS, Davidson WS, Koop BF. Sex-specific expression, synthesis 
and localization of aromatase regulators in one-year-old Atlantic 
salmon ovaries and testes. Comp Biochem Physiol B Biochem Mol Biol. 
2013;164(4):236–46. https ://doi.org/10.1016/j.cbpb.2013.01.004.

 18. Kimmins S, Kotaja N, Davidson I, Sassone-Corsi P. Testis-specific transcrip-
tion mechanisms promoting male germ-cell differentiation. Reproduc-
tion. 2004;128(1):5–12.

 19. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, 
Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioan-
nidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier 
G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal. 
Nucleic Acids Res. 2012;40(W1):W597–603. https ://doi.org/10.1093/nar/
gks40 0.

 20. Lien S, et al. The Atlantic salmon genome provides insights into redip-
loidization. Nature. 2016;533(7602):200–5. https ://doi.org/10.1038/natur 
e1716 4.

Abbreviations
aar: amino acid residue; AK: adenylate kinase; cAMP: cyclic AMP; CREB: cAMP 
response element binding protein; CREM: cAMP response element modulator; 
ERα: estrogen receptor-alpha; FOXL2: forkhead box L2; nts: nucleotides; ODF: 
outer dense fibers; PDE: phosphodiesterase; sAC: soluble adenylyl cyclase; utr: 
untranslated region.

Authors’ contributions
KRVS conceived the project and drafted the manuscript, KRVS and EBR 
performed transcript and genome analysis, JSL assembled and analyzed 
the sperm library, BFK and WSD provided scientific input and resources. All 
authors read and approved the final manuscript.

Author details
1 Department of Molecular Biology and Biochemistry, Simon Fraser University, 
Burnaby, BC V5A 1S6, Canada. 2 Department of Biology, Centre for Biomedical 
Research, University of Victoria, Victoria, BC V8W 3N5, Canada. 

Acknowledgements
We would like to thank Brent Gowen for his work in determining the expres-
sion of CREB/CREM, ERα and FOXL2A in the flagella of salmon sperm (Electron 
Microscopy Laboratory, University of Victoria, Victoria, B.C., Canada).

Competing interests
The authors declare that they have no competing interests.

Availability of supporting data
The data supporting the results of this article are included within the 
article and its additional files. The datasets are publicly available under 
NCBI TSA records GEGX00000000 for testis, GEGY00000000 for sperm and 
GBRB00000000 for remaining libraries.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This research was supported by a Natural Resources and Applied Sciences 
Team Grant from the B.C. Innovation Council (WSD, BFK) and the Natural Sci-
ences and Engineering Research Council of Canada (BFK, WSD).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 5 July 2018   Accepted: 30 August 2018

References
 1. Laoide BM, Foulkes NS, Schlotter F, Sassone-Corsi P. The functional 

versatility of CREM is determined by its modular structure. EMBO J. 
1993;12(3):1179–91.

https://doi.org/10.1186/s13104-018-3749-z
https://doi.org/10.1371/journal.pbio.0060255
https://doi.org/10.1371/journal.pbio.0060255
https://doi.org/10.2164/jandrol.111.014167
https://doi.org/10.1530/REP-12-0362
https://doi.org/10.1530/REP-12-0362
https://doi.org/10.1530/REP-14-0394
https://doi.org/10.1095/biolreprod.109.079699
https://doi.org/10.1007/s00418-017-1611-3
https://doi.org/10.1007/s00418-017-1611-3
http://www.ncbi.nlm.nih.gov/genbank/tsa/
http://www.ncbi.nlm.nih.gov/genbank/tsa/
https://doi.org/10.1095/biolreprod.113.114447
http://workbench.sdsc.edu
https://doi.org/10.1016/j.cbpb.2009.10.015
https://doi.org/10.1016/j.cbpb.2009.10.015
https://doi.org/10.1016/j.cbpb.2013.01.004
https://doi.org/10.1093/nar/gks400
https://doi.org/10.1093/nar/gks400
https://doi.org/10.1038/nature17164
https://doi.org/10.1038/nature17164


Page 7 of 7von Schalburg et al. BMC Res Notes  (2018) 11:639 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

 21. Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 
2002;12(4):656–64.

 22. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton 
S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drum-
mond A. Geneious basic: an integrated and extendable desktop software 
platform for the organization and analysis of sequence data. Bioinformat-
ics. 2012;28(12):1647–9. https ://doi.org/10.1093/bioin forma tics/bts19 9.

 23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment 
search tool. J Mol Biol. 1990;215(3):403–10.

 24. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput 
B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, 
et al. Reference sequence (RefSeq) database at NCBI: current status, 
taxonomic expansion, and functional annotation. Nucleic Acids Res. 
2016;44(D1):D733–45. https ://doi.org/10.1093/nar/gkv11 89.

 25. Yang J, Medvedev S, Reddi PP, Schultz RM, Hecht NB. The DNA/RNA-
binding protein MSY2 marks specific transcripts for cytoplasmic storage 
in mouse male germ cells. Proc Natl Acad Sci USA. 2005;102(5):1513–8. 
https ://doi.org/10.1073/pnas.04046 85102 .

 26. Chowdhury TA, Kleene KC. Identification of potential regulatory elements 
in the 5′ and 3′ UTRs of 12 translationally regulated mRNAs in mamma-
lian spermatids by comparative genomics. J Androl. 2012;33(2):244–56. 
https ://doi.org/10.2164/jandr ol.110.01249 2.

 27. Meikar O, Vagin VV, Chalmel F, Sõstar K, Lardenois A, Hammell M, Jin Y, Da 
Ros M, Wasik KA, Toppari J, Hannon GJ, Kotaja N. An atlas of chromatoid 
body components. RNA. 2014;20(4):483–95. https ://doi.org/10.1261/
rna.04372 9.113.

 28. Jodar M, Sendler E, Krawetz SA. The protein and transcript profiles 
of human semen. Cell Tissue Res. 2016;363(1):85–96. https ://doi.
org/10.1007/s0044 1-015-2237-1.

 29. Schuster A, Tang C, Xie Y, Ortogero N, Yuan S, Yan W. SpermBase: a data-
base for sperm-borne RNA contents. Biol Reprod. 2016;95(5):99. https ://
doi.org/10.1095/biolr eprod .116.14219 0.

 30. Lalli E, Ohe K, Hindelang C, Sassone-Corsi P. Orphan receptor DAX-1 is a 
shuttling RNA binding protein associated with polyribosomes via mRNA. 
Mol Cell Biol. 2000;20(13):4910–21.

https://doi.org/10.1093/bioinformatics/bts199
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1073/pnas.0404685102
https://doi.org/10.2164/jandrol.110.012492
https://doi.org/10.1261/rna.043729.113
https://doi.org/10.1261/rna.043729.113
https://doi.org/10.1007/s00441-015-2237-1
https://doi.org/10.1007/s00441-015-2237-1
https://doi.org/10.1095/biolreprod.116.142190
https://doi.org/10.1095/biolreprod.116.142190

	Regulatory processes that control haploid expression of salmon sperm mRNAs
	Abstract 
	Objective: 
	Results: 

	Introduction
	Main text
	Methods
	Identification and characterization of RNA recognition motifs
	Identification of potential protein sperm-specific localization motifs
	Verification of transcript sequences by comparison to genome

	Results and discussion

	Limitations
	Authors’ contributions
	References




