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Abstract We revisit the effective action of the Gribov–
Zwanziger theory, taking into due account the BRST sym-
metry and renormalization (group invariance) of the con-
struction. We compute at one loop the effective potential,
showing the emergence of BRST-invariant dimension 2 con-
densates stabilizing the vacuum. This paper sets the stage at
zero temperature, and clears the way to studying the Gribov–
Zwanziger gap equations, and particularly the horizon con-
dition, at finite temperature in future work.

1 Introduction

Up until now, quark and gluon confinement has not been rig-
orously proven. It is well known that the perturbative formal-
ism fails for non-Abelian gauge theories at low energy, since
the coupling constant g2 is strong. To get reliable results in the
infrared (IR) in the continuum formulation, non-perturbative
methods are needed. For a small selection of such meth-
ods and obtained results, let us refer for example to [1–15].
Notice that the continuum formulation requires gauge fixing,
in which case lattice analogues of dedicated gauge fixings
can be a powerful ally giving complementary insights, see
[16–23] for some relevant works in this area.

Motivated by this, a number of studies over the past decade
have focused on the gluon, quark and also ghost propagator in
the infrared region, where color degrees of freedom are con-
fined. Although these objects are unphysical by themselves

a e-mail: david.dudal@kuleuven.be
b e-mail: caroline.felix@kuleuven.be
c e-mail: leticia.palhares@uerj.br
d e-mail: francois.rondeau@ens-paris-saclay.fr
e e-mail: vercauterendavid@duytan.edu.vn

– being gauge variant – they are nevertheless the basic build-
ing blocks, next to the interaction vertices, entering gauge-
invariant objects directly linked to physically relevant quan-
tities such as the spectrum, decay constants, critical expo-
nents and temperatures, etc. One of the most striking fea-
tures that all these non-perturbative approaches share is that
the gluon attains a dynamical mass scale, thereby resolving
its massless pole. Notice that this gluon mass scale has noth-
ing to do with an observable massive gluon, as the gluon
is not part of the spectrum. Indeed, its spectral properties
are not compatible with an asymptotic S-matrix observable.
This also means that establishing unitarity at the level of
strongly interacting gluons is a meaningless question, rather
one should prove the non-perturbative unitarity at the level
of gluon and quark bound states (glueballs, hadrons and pos-
sibly hybrids). To the best of our knowledge, this is an open
question which would basically amount to prove confine-
ment and the Yang–Mills mass gap, and certainly not the
topic of this paper. Direct model-independent lattice evidence
for the unphysical spectral nature of the gluon came from
its non-positive Schwinger function (temporal correlator),
e.g. [16,24], non-positive spectral function, e.g. [25–28], or
even possible occurrence of complex conjugate mass poles,
[29]. Such features also appear in aforementioned analytical
approaches, see our extensive reference list.

One particular way to deal with non-perturbative physics
at the level of elementary degrees of freedom is by dealing
with the Gribov issue [9,30]: the fact that there is no unique
way of selecting one representative configuration of a given
gauge orbit in covariant gauges [31]. As there is also no
rigourous way to deal properly with the existence of gauge
copy modes in the path integral quantization procedure, in
this paper we will use a well-tested formalism available to
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deal with the issue, which is known as the Gribov–Zwanziger
(GZ) formalism: a restriction of the path integral to a smaller
subdomain of gauge fields [30,32,33].

This approach was first proposed for the Landau and the
Coulomb gauges . It long suffered from a serious drawback:
its concrete implementation seemed to be inconsistent with
BRST (Becchi–Rouet–Stora–Tyutin [34–36]) invariance of
the gauge-fixed theory, which clouded its interpretation as a
gauge (fixed) theory. Only more recently was it realized by
some of us and colleagues how to overcome this complication
to get a BRST-invariant restriction of the gauge path integral .
As a bonus, the method also allowed the generalization of the
GZ approach to the linear covariant gauges, amongst others
[37–40].

Another issue with the original GZ approach was that
some of its major leading-order predictions did not match
the corresponding lattice output. Indeed, in the case of the
Landau gauge, the GZ formalism by itself predicts at tree
level a gluon propagator vanishing at momentum p = 0,
next to, more importantly, a ghost propagator with a stronger
than 1/p2 singularity for p → 0. Although the latter fitted
well in the Kugo–Ojima confinement criterion [41], it was
at odds with large volume lattice simulations [17,18]. By
now, several analytical takes exist on this, all being compat-
ible, qualitatively and/or quantitatively, with lattice data, not
only for elementary propagators but also for vertices. In the
GZ formalism, in particular, the situation can be remedied
by correctly incorporating the effects of certain mass dimen-
sion two condensates, the importance of which was already
stressed before in papers like [42–46]. This idea was first put
on the table in [3,4] and later on a self-consistent compu-
tational scheme was constructed in [47] based on the effec-
tive action formalism for local composite operators devel-
oped in [45,48], the renormalization of which was proven in
[49]. Unfortunately, the explicit computation of the effective
action was not achieved at the time, while the setup was still
based on the BRST-breaking GZ proposal.

The goal of this paper is thus to revisit, in the newly estab-
lished BRST-invariant setting, the dynamical generation of
d = 2 condensates, the latter themselves affiliated to BRST-
invariant operators. Said otherwise, we will explicitly con-
struct the non-perturbative GZ vacuum, which will be shown
to have a lower vacuum energy compared to the original GZ
action. Moreover, we show that the original action represents
a totally unstable point of the effective potential, while the
formation of the condensates properly produces a minimum.
The GZ vacuum thus stabilizes itself by the formation of
non-trivial condensates, which in return affect the dynamics
of the field excitations above that vacuum. The practical prob-
lems to compute the effective potential that plagued [47] are
circumvented here by a clever use of Hubbard–Stratonovich
transformations.

This paper is organized as follows. In Sect. 2, we briefly
introduce the BRST-invariant Gribov–Zwanziger formalism
for the class of linear covariant gauges. The transition from
the Gribov–Zwanziger to the Refined Gribov–Zwanziger
(RGZ) procedure is described in Sect. 3. We also concisely
explain the renormalization group equation aspects of the
effective action construction for a set of d = 2 BRST invari-
ant local composite operators in Sect. 4. In the Sect. 5, the
one-loop calculation of the effective potential is presented.
Finally, in Sect. 6, the physical solution is identified in MS
and in general schemes.

2 The BRST-invariant Gribov–Zwanziger action in
linear covariant gauges

It is well known that at low energy, we have to deal with
Gribov copies, in principle both with “large” and infinites-
imal ones. In the low-energy regime, such copies are not
suppressed because the coupling constant g is large [30]. A
way to avoid the ambiguity – or at least the ambiguity com-
ing from the infinitesimal ones – is to restrict the functional
integral over the gauge fields to a specific region � in field
space where no infinitesimal Gribov copies exist – as was
originally proposed by Gribov in the Landau gauge [30]. As
the Gribov ambiguity exists for any covariant gauge [31], it
will in particular be present in the class of widely used lin-
ear covariant gauges, to which Feynman gauge and Landau
gauge belong. It was only recently discussed how to treat
these copies in linear covariant gauges other than the Landau
gauge [37–40,50].

The construction eliminating (infinitesimal) Gribov copies
in general linear covariant gauges is based on the field Ah

μ,
which is the gauge transformed configuration of Aμ mini-
mizing the functional

f A[u] ≡ min{u} Tr
∫

dd x Au
μA

u
μ,

Au
μ = u†Aμu + i

g
u†∂μu, (1)

which is obtained through iterative minimization of the func-
tional f A[u] along the gauge orbit of Aμ [51–53]. The field
Ah

μ is a non-local power series in the gauge field; iterative
minimization produces the following local minimum:

Ah
μ =

(
δμν − ∂μ∂ν

∂2

)
φν, ∂μA

h
μ = 0, (2a)

φν = Aν − ig

[
1

∂2 ∂A, Aν

]

+ ig

2

[
1

∂2 ∂A, ∂ν

1

∂2 ∂A

]
+ O(A3). (2b)
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It is worth pointing out that the quantity Ah
μ is gauge invariant

order by order [37–40,50]. If we couple Ah
μ to the Yang–Mills

action in a general linear covariant gauge, it seems this will
result in a non-local quantum field theory. Fortunately, the
field Ah

μ can be localized by adding an auxiliary Stueckelberg
field ξa [37–40,50,54] so that

Ah
μ = (Ah)aμT

a = h†Aa
μT

ah + i

g
h†∂μh, h = eig ξaT a

,

(3)

and by imposing that Ah
μ is transverse, ∂μAh

μ = 0. Now, the
local gauge invariance of Ah

μ under a gauge transformation
u ∈ SU (N ) can be appreciated from

h → u†h, h† → h†u, Aμ → u†Aμu + i

g
u†∂μu. (4)

Using this field Ah
μ, a Gribov region � not containing any

infinitesimal Gribov copies is given by

� = {Aa
μ; ∂μA

a
μ=iαba, Mab(Ah)=−∂μD

ab
μ (Ah) > 0},

(5)

where a Hermitian Faddeev–Popov-like operator,1 Mab(Ah)

= −δab∂2+g f abc(Ah)cμ∂μ, is required to be positive. Notice
that we have to assume here that every gauge orbit passes
through this region �. In fact, to our knowledge, it is not
even formally proven that every gauge configuration can be
transformed into the linear covariant gauge to begin with.
This has only been firmly established for the Landau gauge
[55].

Implementing the positivity of the Hermitian operator
−∂D(Ah) is a sufficient condition to kill off a large set of
gauge copies in linear covariant gauges, namely those that
are continuously connected to infinitesimal copies in Lan-
dau gauge, as has been discussed in [37]. More precisely, we
impose that the Fourier transform of the inverse operator of
−∂D(Ah) displays no poles for p2 > 0. This constraint can,
in the thermodynamic limit, be lifted into the path integral
using a saddle point evaluation. The saddle point equation is
nothing else than the horizon condition, which in its original,
non-local, form reads in d dimensions

〈h(x)〉 = d(N 2 − 1),

h(x) = g2γ 4
∫

dd x f akc Ah,k
μ (x)

×[−∂μD
ab
μ (Ah)]−1

(x,y) f
bmc Ah,m

μ (y) (6)

We refer to [37,38] for the detailed derivation, see also [9,
30,32,33,56].

1 This is not the Faddeev–Popov operator for a generic linear covariant
gauge, the latter is given by the non-Hermitian operator −∂D(A).

The total action implementing the Gribov horizon condi-
tion in a general linear covariant gauge is given by

S = SYM + SGF + SGZ + Sε. (7a)

In this expression, SYM is the Yang–Mills action

SYM = 1

4

∫
dd xFa

μνF
a
μν; (7b)

SGF denotes the Faddeev–Popov gauge fixing in the linear
covariant gauge:

SGF =
∫

dd x
(αg

2
baba + iba ∂μA

a
μ + c̄a∂μD

ab
μ (A)cb

)
,

(7c)

with αg the gauge parameter, which is zero for the Landau
gauge; and SGZ is the Gribov–Zwanziger action in its local
form, which can be written as

SGZ =
∫

dd x[ϕ̄ac
μ ∂νD

ab
ν (Ah)ϕbc

μ − ω̄ac
μ ∂ν(D

ab
ν (Ah)ωbc

μ )]

−γ 2g
∫

d4x

[
f abc(Ah)aμ(ϕbc

μ + ϕ̄bc
μ )

+d

g
(N 2 − 1)γ 2

]
, (7d)

The localizing fields (ϕ̄ac
μ , ϕac

μ ) are a pair of complex-
conjugate bosonic fields, while (ω̄ac

μ , ωac
μ ) a pair of anti-

commuting complex-conjugate fields. The fields η̄a and ηa

are also ghost-like, while γ is the Gribov parameter, which
is dynamically fixed by a gap equation [32,33,38,56],

〈 f abc(Ah)aμ(ϕbc
μ + ϕ̄bc

μ )〉 = 2d(N 2 − 1)
γ 2

g2 , (8)

also known as the horizon condition. This equation can be
succinctly rewritten as

∂�

∂γ 2 = 0, (9)

where � is the quantum action defined by

e−� =
∫

[D�]e−S (10)

with [D�] the Haar measure of integration over all the quan-
tum fields present in the action. By integrating over the aux-
iliary fields in (7d), the equivalence of the local with the
non-local version can be easily established, including the
fact that the horizon condition (9) is equivalent to the saddle
point constraint (6).

Finally, the term Sε

Sε =
∫

dd x (εa ∂μ(Ah)aμ + η̄a∂μD
ab
μ (Ah)ηb) (11)

implements, through the Lagrange multiplier ε, the transver-
sality of the composite operator (Ah)aμ, namely ∂μ(Ah)aμ =

123
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0. The fields η̄a and ηa are also ghost-like and account for
the Jacobian accompanying the constraint.

The action S in Eq. (7a) enjoys an exact BRST invariance,
sS = 0 and s2 = 0, expressed by [37–40,50]

s Aa
μ = −Dab

μ cb,

sca = g

2
f abccbcc, sc̄a = iba,

sba = 0,

sϕab
μ = 0, sωab

μ = 0,

sω̄ab
μ = 0, sϕ̄ab

μ = 0,

sεa = 0, s(Ah)aμ = 0,

shi j = −igca(T a)ikhk j . (12)

Notice that the gap equation (8) is a BRST-invariant condi-
tion. The multiplicative renormalizability of this construction
was proven, to all orders, in [57,58].

3 Refined Gribov–Zwanziger action

In [3], it was noticed that the GZ formalism in Landau gauge
is plagued by non-perturbative dynamical instabilities, lead-
ing to the formation of d = 2 condensates like 〈Aa

μA
a
μ〉

and 〈ϕ̄ab
μ ϕab

μ − ω̄ab
μ ωab

μ 〉, which are energetically favored
[3,4,47]. Later, similar features were noticed in the Max-
imal Abelian gauge GZ formulation [59,60]. This led to
the Refined Gribov–Zwanziger formalism, which explicitly
takes into account the effects of these condensates.

In this paper, we will work out in detail the dynamical
RGZ formalism in linear covariant gauges. In order to do
so, we will couple the BRST-invariant operators Ah,a

μ Ah,a
μ

and ϕ̄ab
μ ϕab

μ to the GZ action via the local composite opera-
tor (LCO) formalism. As a final result, the Refined Gribov–
Zwanziger (RGZ) action (27) will be obtained. With this
RGZ action, the dominant IR ghost behavior is 1/p2, while
the gluon propagator, at tree-level but in the new improved
vacuum, is given by

〈Aa
μ(p)Ab

ν(−p)〉

= p2 + M2

p4 + (M2 + m2)p2 + M2m2 + λ4Pμν(p)δ
ab

+αg

p2 Lμνδ
ab, (13)

where

Pμν(p) = δμν − pμ pν

p2 , Lμν = pμ pν

p2 , (14)

are the transversal and longitudinal projectors,λ4 = 2g2Nγ 4,
and M2 and m2 are the mass scales linked to the condensates
〈ϕ̄ab

μ ϕab
μ 〉 and 〈Ah,a

μ Ah,a
μ 〉, respectively (see later). It can be

shown, [39], that the longitudinal form factor remains bare,
as is usual in the linear covariant gauge. This fact is also con-
firmed non-perturbatively using lattice simulations [23,61]
and is consistent with the findings in [62,63] as well.

For later usage, we remind here that, using the Nielsen
identities, it can be shown that the poles of the gluon prop-
agator are gauge parameter and renormalization scale inde-
pendent order per order, even in the GZ case. See the detailed
discussion in [40]. Evidently, BRST invariance is crucial here
as this underlies the Nielsen identities. We will later on use
this knowledge.

Depending on the relative size of the mass scales appear-
ing in (13), the propagator can develop complex-conjugate
poles. If (13) is fitted to lattice data, the complex pole scenario
is clearly preferred [64–66]. These complex poles evidently
remove the gluon from the physical spectrum, which could
offer an intuitive explanation of why gluons are unobserv-
able. Notice that these complex poles also occur explicitly in
other approaches, see [14,29,67].

To compute the effective potential of the above-mentioned
condensates, we add the local sources τ and Q, coupled to
the relevant local composite operators, to the action S given
in (7a):

� = S + SA2 + Sϕϕ̄ + Svac. (15a)

In this expression, we have, including the Z -factors in the
conventions of [47], that

SA2 =
∫

dd x ZA(Zττ τ + ZτQQ)
1

2
Ah,a

μ Ah,a
μ , (15b)

Sϕ̄ϕ =
∫

dd x ZQQ ZϕQϕ̄ac
μ ϕac

μ , (15c)

Svac = −
∫

dd x

(
Zζ ζ

2
τ 2 + ZααQ2 + ZχχQτ

)
. (15d)

In the above expressions, we already used the fact that the
source Q has no mixing with τ (i.e. ZQτ = 0), while τ does
mix with Q, see later. At the operator level, this means ϕ̄ϕ

mixes with Ah Ah , while Ah Ah renormalizes on its own. The
sources are BRST singlets,

sτ = 0, sQ = 0. (16)

When computing the generating functional, new diver-
gences proportional to τ 2, Q2 and τQ appear. This happens
because of the divergences appearing in correlation functions
such as 〈O j (x)O j (y)〉, with Oi one of the d = 2 operators
added to the RGZ action. This is why the term Svac given
in (15d) is necessary. The counterterms, which come with
new and a priori free parameters α, χ and ζ (so-called LCO
parameters), will absorb the divergences in τ 2, Q2 and Qτ ,
i.e. via δζ τ 2, δαQ2 and δχQτ . We will momentarily discuss
how to fix the (finite) parameters themselves, while maintain-
ing full multiplicative renormalizability. This method was
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originally developed in [48], see also [45,68]. The general-
ization, including operator mixing, was worked out first in
[47], and we will rely on the latter reference.

Given that the main purpose of this work is to compute
d = 2 vacuum condensates which are BRST invariant, we
can actually make use of the full power of BRST. Indeed,
we can choose an appropriate gauge for explicit computa-
tion. Clearly, the Landau gauge is singled out, as in that case
Ah Ah collapses into A2. Loosely speaking, this is clear from
expression (2). A more formal proof based on integrating over
the auxiliary fields ξ , ε, η and η̄ is provided in [40], estab-
lishing that the BRST invariant action for αg → 0 exactly
reduces to that of the original GZ action in Landau gauge
(modulo the extra d = 2 operators of course).

As such, we can rely on the algebraic renormalization
analysis already performed in [47], establishing the renor-
malizability of the action to all orders of perturbation theory.
Moreover, it was shown that the sources (Q, τ ) have the fol-
lowing renormalization structure
(
Q0

τ0

)
=

(
ZQQ 0
ZτQ Zττ

) (
Q
τ

)
. (17)

4 Essential points of the LCO formalism

This section is largely based on [47, Sect. 4.1]. In order to
make the paper self-contained, we now review the main steps.

We are interested in the generating functional

e−�(J ) =
∫

[D�]e−� (18)

where J =
(
Q
τ

)
and the classical action, with sources, has

been written down in (15a). At the bare level and in dimen-
sional regularization (d = 4 − ε), we have

−1

2
ζ0τ

2
0 − α0Q

2
0 − χ0Q0τ0

= −μ−ε

(
1

2
ζ τ 2 + αQ2 + χQτ

+1

2
δζ τ 2 + δαQ2 + δχQτ

)
, (19)

where we used δζ , δα and δχ to denote the corresponding
vacuum counterterms [47], necessary to remove the diver-
gences in the sources squared that arise when computing the
generating functional. We also already introduced the renor-
malization scale μ necessary for dimensional reasons.

The renormalization matrix can be translated into an
anomalous dimension matrix γ [47],

γ =
(

Z−1
QQμ ∂

∂μ
ZQQ 0

−ZτQμ ∂
∂μ

ZQQ + Z−1
ττ μ ∂

∂μ
ZτQ Z−1

ττ μ ∂
∂μ

Zττ

)

=
(

γQQ 0
γ21 γττ

)
. (20)

so that

μ
∂

∂μ
J = −γ · J. (21)

Next, deriving (19) w.r.t. μ and identifying terms in Q2,τ 2

and Qτ , we find 3 coupled differential equations

β(g2)
∂

∂g2

ζ(g2)

2
= ε

2
δζ − 1

2
β(g2)

∂

∂g2 (δζ )

+ γττ (g
2)(ζ + δζ ),

β(g2)
∂

∂g2 α(g2) = εδα − β(g2)
∂

∂g2 (δα)

+ 2γQQ(g2)(α + δα) + �21(g
2)(χ + δχ),

β(g2)
∂

∂g2 χ(g2) = εδχ − β(g2)
∂

∂g2 (δχ)

+ γQQ(g2)(χ + δχ) + γττ (g
2)(χ + δχ)

+ �21(g
2)(ζ + δζ ). (22)

where, following the LCO formalism [48], we made ζ(g2),
α(g2) and ξ(g2) functions of g2, such that they are no longer
free parameters but completely determinable by solving the
previous renormalization-group based equations. In practice,
this happens order per order in perturbation theory by using
a Laurent expansion in g2. This choice (which is unique, see
[48,68]) is compatible with multiplicative renormalizability
of the parameters, in addition to ensuring a homogeneous
renormalization group equation of the standard type for the
generating functional,(

μ
∂

∂μ
+ β(g2)

∂

∂g2 +
∫

dd x J · γ · δ

δ J

)
�(J ) = 0. (23)

Note that in deriving the relations (22), the finiteness of
(ζ, α, ξ) plays a role.

5 Computation of the effective action

Notice that the action � in (15a) has three terms quadratic in
the sources. These terms introduce a conceptual difficulty: the
interpretation of the effective action � as an energy density.
Indeed, when the sources J are linearly coupled to fields σ ,
the functional �(J ) can be Legendre transformed into �(σ).
However, if �(J ) contains squares (or higher powers) of the
sources, these terms would not cancel out in the Legendre
transform, such that the interpretation of � as an energy den-
sity is unclear.

In [45,48], it was shown how to circumvent this apparent
problem by a suitable Hubbard–Stratonovich transformation.
In the case of mixing sources/operators, a generalization of
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this strategy was first worked out in [47]. Here, we will use a
slightly different version from that of [47], which offers the
advantage that – despite the observations in [45,48] – it is
not necessary to perform (n + 1)-loop computations to get
n-loop results with the LCO formalism. That this is possible
was first noticed in [69].

To get rid of these quadratic terms in the sources, we pro-
ceed by introducing two auxiliary fields σ1 and σ2 through
two identities

1 =
∫

[Dσ1] e− 1
2Zζ

∫
dd x

(
σ1+ ā

2 A
2+b̄Q+c̄τ

)2

, (24a)

1 =
∫

[Dσ2] e+ 1
2Zα

∫
dd x

(
σ2+d̄ϕϕ+ēQ+ f̄

2 A2
)2

, (24b)

with which we multiply the integral in (18). The positive sign
in the exponent of the second integral (24b) obviously makes
it infinite. However, we should remind that all functional
integrals are actually defined only up to an infinite constant,
often not explicitly written. Actually, what we are doing by
inserting this “infinite identity” can be seen as a rescaling
of the infinite constant hidden in expression (18). Doing this
rescaling in a subtle way, a careful choice of the coefficients ā
to f̄ allows us to eliminate all the quadratic terms in sources
appearing in the partition function.

A straightforward computation shows that we have to
choose the coefficients

ā = ZAZττ√
ζ

με/2 (25a)

b̄ = − Zχχ√
ζ

μ−ε/2, (25b)

c̄ = −Zζ

√
ζμ−ε/2, (25c)

d̄ = ZϕZQQ√
−2α + Z2

χχ2

Zα Zζ ζ

με/2, (25d)

ē = Zα

√
−2α + Z2

χχ2

ZαZζ ζ
μ−ε/2, (25e)

f̄ = −
ZAZττ Zχχ

Zζ ζ
+ ZAZτQ√

−2α + Z2
χχ2

Zα Zζ ζ

με/2, (25f)

in order to obtain a new expression for � involving only
terms linear in the sources. The renormalization factors (Z -
factors) are calculable, see [47] and underlying references
like [45,70]. In the MS scheme and at one-loop, these Z -
factors read in our current conventions as follows:

ZA = 1 + 13

6

Ng2

16π2

2

ε
, Zg = 1 − 11

6

Ng2

16π2

2

ε
,

Zϕ = Z−1
g Z−1/2

A = 1 + 3

4

Ng2

16π2

2

ε
, (26a)

Zζ = 1 − 13

6

Ng2

16π2

2

ε
, Zα = 1 + 35

12

Ng2

16π2

2

ε
, Zχ = 1,

Zγ 2 = Z−1/2
g Z−1/4

A = 1 + 3

8

Ng2

16π2

2

ε
, (26b)

Zττ = 1 − 35

12

Ng2

16π2

2

ε
, ZτQ = 0,

ZQQ = Z−1
ϕ = 1 − 3

2

Ng2

16π2ε
. (26c)

Therefore, (18) can be rewritten as follows:

e−�(Q,τ ) =
∫

[D�][Dσ1Dσ ′
2] exp

[
−SGZ

−
∫

dd x

(
σ 2

1

2Zζ

(
1 − b̄2

ē2

Zα

Zζ

)

− σ ′2
2

2Zα

− b̄

ē

σ1σ
′
2

Zζ

+
(

1

2Zζ

(
ā − f̄ b̄

ē

)
σ1 − f̄

2Zα

σ ′
2

)
A2

−
(
b̄d̄

ē

1

Zζ

σ1 + d̄

Zα

σ ′
2

)
ϕϕ

+ ā2

8Zζ

(A2)2 − 1

2Zα

(
f̄

2
A2 + d̄ϕϕ

)2

+ c̄

Zζ

σ1τ − ē

Zα

σ ′
2Q

)]
(27)

where σ ′
2 is defined by

σ ′
2 = σ2 − b̄

ē

Zα

Zζ

σ1. (28)

In this expression, all LCO parameters, sources and fields
are now finite, and infinities are only present in the Z renor-
malization factors, whether explicitly written or present in
the coefficients ā to f̄ . At one loop, χ = 0 and ZτQ = 0
[47], which implies that b̄ = f̄ = 0 and thus σ ′

2 = σ2.

In order to have an expression of the form m2

2 A2 −M2ϕ̄ϕ,
we define the effective mass scales, m2 and M2, linked to
〈AA〉 and 〈ϕ̄ϕ〉 respectively, by the classical (leading order
in g) parts of the vacuum expectation values of the respective
quadratic terms in the action (27), that is:

m2 ≡
(

1

Zζ

(
ā − f̄ b̄

ē

)
〈σ1〉 − f̄

Zα

〈σ ′
2〉

)∣∣∣∣
leading

= 1√
ζ

∣∣∣∣
leading

〈σ1〉 =
√

13Ng2

9(N 2 − 1)
〈σ1〉 (29a)
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M2 ≡
(
b̄d̄

ē

1

Zζ

〈σ1〉 + d̄

Zα

〈σ ′
2〉

)∣∣∣∣
leading

= 1√−2α

∣∣∣∣
leading

〈σ ′
2〉 =

√
35Ng2

48(N 2 − 1)2 〈σ ′
2〉 (29b)

where the last equalities follow from α = α0
g2 = − 24(N2−1)2

35Ng2

and ζ = ζ0
g2 = 9(N2−1)

13Ng2 [47].

Assuming the fields σ1 and σ ′
2 develop nonzero vac-

uum expectation values, we can compute these by means
of Jackiw’s background field method [71]. We replace these
fields by a classical vacuum expectation value and a fluctu-
ating quantum part, σ → 〈σ 〉 + σ , ignore terms linear in
the fields as these drop out when working around extrema,
and we integrate out all the fluctuations. With this decom-
position of the (auxiliary) fields, the quadratic part of the
action (including only those Z -factors that are necessary for
a one-loop computation) becomes

∫
dd x

(
1

2
Aa

μ

(
−δμν∂

2 +
(

1 − 1

αg

)
∂μ∂ν

)
Aa

ν

+ c̄a∂2ca + ϕab
μ ∂2ϕab

μ − ωab
μ ∂2ωab

μ

− γ 2g f abc Aa
μ(ϕbc

μ + ϕbc
μ ) − Z2

γ 2d(N 2 − 1)γ 4 + σ 2
1

2Zζ

− σ ′2
2

2Zα

+ m2

2
A2 − M2ϕϕ

)
. (30)

Using the definitions (29), in addition to

ϕ̄ab
μ = Uab

μ + iV ab
μ ,

ϕab
μ = Uab

μ − iV ab
μ , (31a)

Pμν ≡ (−∂2 + M2)δμν, (31b)

Qμν ≡
[
(−∂2 + m2)δμν +

(
1 − 1

αg

)
∂μ∂ν

]
, (31c)

this quadratic part can be rewritten as

∫
dd x

(
−Z2

γ 2d(N 2 − 1)γ 4

+ 9(N 2 − 1)

13Ng2

m4

2Zζ

− 48(N 2 − 1)2

35Ng2

M4

2Zα

+ 1

2
Aa

μQμν A
a
ν + c̄a∂2ca

−Uab
μ PμνU

ab
ν − V ab

μ PμνV
ab
ν

− ωab
μ ∂2ωab

μ − 2γ 2g f abc Aa
μU

bc
μ

)
. (32)

Since the ghost fields c, c̄, ω, ω̄ appear uncoupled to other
fields, they can be immediately integrated out, giving just

an overall factor. The real bosonic fields U and V can be
integrated out next, leading to:
∫

[DU ][DV ]e− ∫
dd x

[
−Vab

μ PμνVab
ν −Uab

μ PμνUab
ν −2gγ 2 f abc Aa

μU
bc
μ

]

= 1

det(Pμνδacδbd)
e− ∫

dd x[Ng2γ 4Aa
μP−1

μν δab Ab
ν ]. (33)

Introducing

Rμν ≡ Qμν + 2Ng2γ 4P−1
μν

=
[(

−∂2 + m2 + 2Nγ 4g2

−∂2 + M2

)
δμν +

(
1 − 1

α g

)
∂μ∂ν

]
,

(34)

we now also integrate over the gluon field Aμ. The quadratic
part of the action containing Aμ is∫

[DA]e− 1
2

∫
dd x Aa

μRμν Aa
ν = 1√

det(Rμνδab)

(35)

As a result, the effective potential will be2

� = −Z2
γ 2d(N 2 − 1)γ 4 + 9(N 2 − 1)

13Ng2

m4

2Zζ

−48(N 2 − 1)2

35Ng2

M4

2Zα

+ (N 2 − 1)2 Tr ln Pμν

+N 2 − 1

2
Tr ln Rμν. (36)

The traces appearing in this expression are computed in
the Appendix, see (A9). Also defining λ4 ≡ 2Ng2γ 4, the
one-loop renormalized effective potential of the Gribov–
Zwanziger theory, refined with the condensates 〈Aa

μA
a
μ〉 and

〈ϕ̄ab
μ ϕab

μ 〉, reads:

�(m2, M2, λ4)

= −2(N 2 − 1)

Ng2 λ4
(

1 − 3

8

Ng2

16π2

)
+ 9(N 2 − 1)

13Ng2

m4

2

−48(N 2 − 1)2

35Ng2

M4

2
+ (N 2 − 1)2

8π2 M4
(

−1 + ln
M2

μ̄2

)

+3(N 2 − 1)

64π2

(
−5

6
(m4 − 2λ4)

+m4 + M4 − 2λ4

2
ln

m2M2 + λ4

μ̄4

−(m2 + M2)
√

4λ4 − (m2 − M2)2

× arctan

√
4λ4 − (m2 − M2)2

m2 + M2 − M4 ln
M2

μ̄2

)
. (37)

In (37), m2 and M2 are proportional to the vacuum expec-
tation values 〈σ1〉 and 〈σ ′

2〉 of the auxiliary fields σ1 and σ ′
2

2 We have tacitly removed the global volume factor everywhere.
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introduced through the Hubbard–Stratonovich transforma-
tions (24), which may appear unphysical. However, acting

with δ
δτ

∣∣
τ=Q=0 and δ

δQ

∣∣∣
τ=Q=0

on (18) and (27) respectively,

we get:

1

2
Zτ ZA〈Aa

μA
a
μ〉 = √

ζμ−ε/2〈σ1〉, (38a)

ZQZϕ〈ϕ̄ac
μ ϕac

μ 〉 = −√−2αμ−ε/2〈σ ′
2〉. (38b)

The condensates 〈σ1〉 and 〈σ ′
2〉, and so the mass scalesm2 and

M2 entering in �, are thus directly related to the more intu-
itive BRST invariant condensates 〈Aa

μA
a
μ〉Landau ≡ 〈Ah

μA
h
μ〉

and 〈ϕ̄ac
μ ϕac

μ 〉 we were originally interested in, of which the
LHS of (38) are the properly renormalized versions.

As expected, the condensation of the LCOs Aa
μA

a
μ and

ϕ̄ac
μ ϕac

μ modifies the energy density � of the theory. The three
first terms in the first line form the classical part of the poten-
tial while the rest of �, proportional to g2 when we consider
the g-dependence ofm2, M2 and λ4, is the one-loop quantum
correction.

6 Gap equation and minimization

We now proceed to find the physical state of the vacuum.
We need to solve the gap equation (9) while simultaneously
minimizing with respect to m2 and M2.

The minus sign in front of M4 in the second classical
term3 obviously makes the classical potential unbounded
from below and thus, unphysical. Our hope at this point was
that the first order quantum correction could “turn” the poten-
tial, making it bounded from below – and possessing one or
several minima – and thus physically meaningful at the quan-
tum level. If it is the case, this would mean that this effective
potential (37) would have the remarkable property of being a
pure quantum object, having no physical classical limit when
h̄ → 0.

A very qualitative asymptotic study gives � ∼ M4 ln M2

for M2 → +∞ – that is, the one-loop correction overtakes
the classical term −M4, as we hoped. Notice that this is qual-
itative at best, since taking field expectation values to infinity
entails the presence of divergent logarithmic terms, making
the efficacy of the perturbative computation of the effective
action again questionable. This issue is always present and
has a priori nothing to do with the sign of the classical term. A
full-fledged renormalization group improvement of the effec-
tive action goes far beyond the scope of the current paper, in
particular since we are dealing with a multiscale problem.
How to best deal with large expectation values in such cases

3 This is related to the sign of α0, which is ultimately dictated by the
sign choice in the unity (24b) we used.

is yet unsettled, see e.g. [72–75] for possible strategies, both
old and new ones.

6.1 Strategy to search for solutions

To find the vacuum state of the theory, we need to solve the
following gap equations:

∂�

∂M2 = 0,
∂�

∂m2 = 0,
∂�

∂λ4 = 0. (39)

As it is not possible to solve this very nonlinear system of
equations by hand, we need to work numerically. In this case,
it is necessary to make a choice for the renormalization scale
μ̄ and the coupling g before it is possible to start hunting
for solutions. These choices are subject to several condi-
tions: as we are working in a semiclassical approximation,
we should choose g to be sufficiently small that we can trust
the perturbative approximation. The renormalization group
then requires that μ̄ be sufficiently large, for we have (at one
loop in the MS scheme)

Ng2

16π2 = 1
11
3 ln μ̄2

�2
MS

. (40)

Furthermore, the scale μ̄2 should be somehow “close” to the
scales that appear in the logarithms (combinations of m2,
M2, and λ2), lest the logarithms appearing in higher-order
corrections be too big to warrant a first-order approximation.
In addition, the solution should be stable under variation of
m2 and M2, as these will take the value that minimizes the
action.4 Finally, the existence of a nonzero solution for λ is
also a requirement, as otherwise the horizon condition would
not be imposed, and the formalism would be again plagued
by Gribov copies .

To investigate this last requirement, let us write down the
gap equation for the Gribov parameter λ, and use the renor-
malization group equation (40) to eliminate the coupling g
in favor of μ̄ and �MS:

x arccot x = 5

6
− 1

2
ln

t

μ̄4 + 44

9
ln

�2
MS

μ̄2 , (41)

where we used the shorthands

x = m2 + M2√
4λ4 − (m2 − M2)2

, t = m2M2 + λ4. (42)

4 The value of λ2 only needs to extremize the action, and indeed will
normally maximize it. Although the latter might sound counterintu-
itive, it is actually a good sign. Indeed, we recall here that the original
parameter γ 2 is the critical point coming from a saddle point evaluation
[30,56], so it better be corresponding to a maximum. The other parame-
tersm2 and M2, however, need to be such that they minimize the action,
for fixed γ 2. This means we need to verify, at the end, with the Hes-
sian determinant criterion, that we have effectively found a minimum
solution of the last 2 gap equations (39).
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In this Eq. (41), there is still one choice we have to make:
the value of μ̄. To simplify the computation, we will follow a
backward approach: we will choose a value5 for x arccot x ,
which determines x and thus λ as a function of the as yet
undetermined m2 and M2. Next, we solve (still by hand) the
gap equation (41) for μ̄ as a function of m2 and M2. Putting
these solutions into the gap equations for m2 and M2, we can
solve numerically for these two mass parameters. Plugging
the solution back into the expressions we found for λ and μ̄,
we can determine the numerical values for these parameters
as well.

Once a numerical solution has been found, we have to
inspect its characteristics to see whether the solution is
acceptable. In the MS scheme for N = 3, it turns out that
the effective coupling Ng2/16π2 is quite large for any value
of x arccot x we may choose in (41). The lowest value we
obtained was Ng2/16π2 = 1.7. Other choices yielded either
higher values of the coupling constant, or nonsensical nega-
tive g2 values, or a saddlepoint when varying m2 and M2.

As the difficulty to find satisfactory solutions may be due
to MS not being the most convenient subtraction scheme, we
investigated other schemes. A scheme which is often used
is the momentum subtraction (MOM) scheme, as it can also
be easily implemented on a lattice. The relationship between
this scheme and MS is computed in detail in [76]. In our case,
it turns out the first term in (37) is to be replaced by

− 2(N 2 − 1)

Ng2 λ4
(

1 −
(

3

8
− 5.233

N

)
Ng2

16π2

)
. (43)

Applying the procedure outlined above for MS still did not
yield any satisfactory solutions, though.

6.2 General subtraction scheme and lattice input

In order to overcome these issues, we will “optimize” our
one-loop effective action by considering it in a generic
scheme. As is argued in [77], we actually only need to param-
eterize two renormalization factors to change from the MS
scheme to a general scheme since there are only two inde-
pendent Z -factors in Landau gauge. In our case, it turns out
to be most useful to consider Zg and Zγ 2 as the indepen-
dent Z -factors, and adapt the other Z -factors accordingly.
We also take into account that the LCO parameters always
appear in combinations like Zζ ζ , the latter being renormal-
ization group invariants themselves, see also the comments in
[68]. As a result, again only the first term in (37) is modified,
becoming

− 2(N 2 − 1)

Ng2 λ4
(

1 −
(

3

8
− b0

)
Ng2

16π2

)
. (44)

5 This value can be any positive real number. If we choose a value larger
than one, x will be purely imaginary and 4λ4 < (m2 − M2)2.

where b0 is a free parameter linked to the renormalization of
the Gribov parameter γ 2, i.e. to the finite part in the infinite
renormalization factor Zγ 2 . The other freedom of scheme,
lingering in the coupling constant renormalization, is yet
invisible at one-loop order. As such, we can keep using the
MS coupling.

With this general subtraction scheme, we again apply the
steps outlined in the previous subsection to solve numeri-
cally for the effective mass scales m2 and M2 and the Gribov
parameter γ 2, now as functions of the parameter b0 in addi-
tion to the renormalization scale μ̄. Choosing the value of
b0 appropriately now does yield acceptable solutions. Now,
however, we have too much freedom, and we need some extra
criterion to fix b0 again.

Applying the principle of minimal sensitivity [78] did not
give anything useful: there was no optimal parameter choice.
As such, we propose a different approach. The ultimate goal
of this research program is to investigate what happens with
the Gribov–Zwanziger theory at finite temperature, to inves-
tigate the response of the Green functions and their feedback
on the deconfinement transition, if any, which can be investi-
gated by including an appropriate temporal background [79–
82], which allows to access the vacuum expectation value of
the Polyakov loop. An important first step in this direction
is to pinpoint a desirable T = 0 vacuum state to start from.
As such, we will benefit from lattice studies, of both SU(2)
and SU(3) gauge theories, that have investigated how well a
propagator of the Gribov type can describe the lattice gluon
propagator, see [65,66]. We will, however, not directly match
our mass scales to the corresponding ones on the lattice, as
this is a renormalization scheme and scale dependent opera-
tion. Instead we should use renormalization group invariant
mass scales, which will be scale and scheme independent.

In the (R)GZ setting, there are two natural candidates,
namely the set of complex conjugate poles of the gluon prop-
agator (13). Next to being scale and scheme independent as
pole masses,6 these quantities are even gauge parameter inde-
pendent, thanks to the underlying BRST invariance, encoded
in Nielsen identities [83,84]. Practically speaking, we deter-
mine the complex conjugate poles of our propagator (13)
using the input of the one-loop effective potential, which
depends on the 2 parameters b0 and μ̄, and we determine
the latter two values by matching our estimate of these gluon
poles with those as estimated from the lattice data, [66] for
N = 3 and [65] for N = 2.

Let us first discuss the N = 3 case. From the data given
at the bottom of page 358 of Ref. [66], righthand numbers,
we can read off the denominator of the gluon propagator as
p4 + 0.522GeV2 p2 + 0.2845GeV4, from which the poles of
the gluon propagator (which are our x±, see (A7)) are

6 The generalization of the standard lore that a pole mass has these
properties has been extended to the (R)GZ theory as well, see [40].
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Fig. 1 The effective action (left) and 2 slices thereof illustrating the minimum (right) (N = 3 case, in units of �MS)

− p2
∣∣∣∣
pole

= (0.26 ± i0.47)GeV2 = (5.2 ± i9.3)�2
MS

,

(45)

where we used that �MS = 0.224GeV in N = 3 pure Yang–
Mills [85,86]. A careful numerical analysis, following the
above methodology, yields that for

x arccot x = 0.82, b0 = −3.42 (46)

the equations allow for a solution with the gluon propagator
pole at the right spot. In this solution we have

g2N

16π2 = 0.40, μ̄ = 1.41�MS = 0.31GeV,

� = −24�MS
4 = −0.059GeV4,

λ4 = 28�MS
4 = 0.071GeV4,

m2 = 2.6�MS
2 = 0.13GeV2,

M2 = 7.8�MS
2 = 0.39GeV2. (47)

It turns out that the effective coupling constant is sufficiently
small to attribute a qualitatively trustworthy meaning to our
results. Furthermore we checked that the solution is a mini-
mum under variation ofm2 and M2 by computing the Hessian
matrix at the minimum.

The main features of the above solution are captured in
Fig. 1. It is instructive to notice that the vacuum energy is
strictly negative, which shows that the non-perturbative vac-
uum in presence of the non-vanishing BRST invariant d = 2
condensates is, at least up to one loop order, more stable than
the “pure” GZ vacuum (m2 = M2 = 0) , in which case it
was already shown in [77] that the vacuum energy is always
strictly positive, independent of the choice of massless renor-
malization scheme. In fact, at M2 = m2 = 0, we have for
any choice of scale or scheme that, at one-loop, ∂�

∂m2 < 0,
∂�

∂M2 < 0, so the pure GZ vacuum is indeed not stable.
To get an idea of the sensitivity to the choice of scale and

scheme, let us also present the results where the optimum

values (46) were increased with 25%,

g2N

16π2 = 0.30, μ̄ = 1.57�MS = 0.35GeV,

� = −65�MS
4 = −0.16GeV4,

λ4 = 27�MS
4 = 0.069GeV4,

m2 = 2.3�MS
2 = 0.11GeV2,

M2 = 12.74�MS
2 = 0.64GeV2, (48)

or decreased with 25%,

g2N

16π2 = 0.66, μ̄ = 1.23�MS = 0.27GeV,

� = −6�MS
4 = −0.016GeV4,

λ4 = 45�MS
4 = 0.11GeV4,

m2 = 3.59�MS
2 = 0.18GeV2,

M2 = 4.35�MS
2 = 0.22GeV2. (49)

For completeness, in Fig. 2, we display the dependence of �

in the region with solutions, this to appreciate the fact that
there is no optimal solution in the sense of minimal sensitiv-
ity. This relatively strong dependence on the renormalization
scale and scheme suggests that more stable results will, pos-
sibly, only be achieved within a full-blown higher loop study.
This goes beyond the scope of the current paper. Two-loop
computations in the (R)GZ context have not been established
so far due to the large number of diagrams, not only caused
by the extra vertices but also by, in particular, the several
mixed propagators involving the gluon and extra GZ fields.

For SU(2), we can be more brief. We use the results of
[65]. In Table IV of this paper, the poles of the propagator
are given as

− p2
∣∣∣∣
pole

= (0.29 ± i0.66)GeV2 = (2.6 ± i6.0)�2
MS

,

(50)
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Fig. 2 Dependence of � on the renormalization scale and scheme
(N = 3 case, in units of �MS)

where we used that �MS = 0.331GeV in N = 2 pure Yang–
Mills [86,87]. We found that for

x arccot x = 0.74, b0 = −1.6 (51)

the equations yielded a solution with the gluon propagator
pole at the right spot. In this solution we have

g2N

16π2 = 1.24, μ̄ = 1.12�MS = 0.37GeV,

� = −0.38�MS
4 = −0.0046GeV4,

λ4 = 9.1�MS
4 = 0.109GeV4,

m2 = 2.3�MS
2 = 0.25GeV2,

M2 = 2.9�MS
2 = 0.32GeV2. (52)

It turns out that the effective coupling constant is again
a bit too high to really trust the SU(2) results; we notice
that the SU(2) and SU(3) results are in the same ballpark,
related to the fact of course the input pole masses were rather
similar.

Conclusion

In this paper, we considered the recently introduced Gribov–
Zwanziger action that implements the restriction of the gauge
degrees of path integration to a smaller subregion in a way
consistent with the linear covariant gauge condition while
also removing a large set of Gribov (gauge) copies. We have
explicitly constructed the one-loop effective potential for two
d = 2 condensates, related to BRST invariant operators. The
latter property allows to carry out their computation (as well
as that of the effective potential) in a specific gauge. We opted

for Landau gauge, in which case the computation simplifies
most. As the considered operators are local but composite,
care is needed in how to construct the effective potential,
related to renormalization (group) issues. We relied on the
LCO (local composite operator) formalism of [45,47,48],
which resolved all possible issues.

We computed the one-loop potential in a generic mass-
less renormalization scheme, but were unable to pinpoint an
optimal scheme, in the sense of minimal sensitivity. We there-
fore used lattice estimates for the set of complex conjugate
poles of the gluon propagator, which are known to be renor-
malization group invariants. We then selected the (unique
at the considered order) scheme in which the computed (tree
level) complex conjugate poles match those lattice values. As
such, we have identified a specific renormalization scheme
to treat the divergences at zero temperature (the case consid-
ered here), upon which we can build in future work to discuss
the interplay of condensates and Gribov gap equation with
the temperature, with as ultimate goal to find out whether
the GZ quantization can capture some essentials of the QCD
thermodynamics and phase transitions, thereby putting on
firmer footing preceding studies like [88–93].

The main result of this paper is the first explicit verifica-
tion, albeit at one-loop order, that GZ dynamically transforms
itself into RGZ thanks to the formation of nonperturbative
d = 2 mass scales, whilst respecting gauge and renormal-
ization group invariance. At the level of the propagators in a
generic linear covariant gauge, our results are at least qual-
itatively consistent with lattice or other functional methods
output. This extends to vertices in the Landau gauge, for
which many more results are available, see [94] and refer-
ences therein.
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Appendix A: Technical computational details

We compute the effective potential given in (36).
First of all there is the classical contribution

−Z2
γ 2d(N 2 − 1)γ 4 + 9(N 2 − 1)

13Ng2

m4

2Zζ

−48(N 2 − 1)2

35Ng2

M4

2Zα

(A1)

Using the one-loop Z factors given in (26), this evaluates to

−4(N 2 − 1)γ 4
(

1 + 3

4

Ng2

16π2

2

ε
− 3

8

Ng2

16π2

)

+9(N 2 − 1)

13Ng2

m4

2

(
1 + 13

6

Ng2

16π2

2

ε

)

−48(N 2 − 1)2

35Ng2

M4

2

(
1 − 35

12

Ng2

16π2

2

ε

)
. (A2)

To compute the logarithmic traces of Pμν and Rμν , we use
the following well-known expression

Tr ln(−∂2 + �)

= − 1

(4π)d/2 �
(− d

2

)
�d/2

= �2

32π2

(
−2

ε
− 3

2
+ ln

�

μ̄2

)
, (A3)

where we used dimensional regularization (d = 4 − ε) and
the MS scheme. Using the fact that tr δμν = d = 4 − ε, we
immediately find that

Tr ln Pμν = M4

8π2

(
−2

ε
− 1 + ln

M2

μ̄2

)
. (A4)

To compute the trace of the logarithm of Rμν , we first split
the spectrum in one longitudinal polarization with eigenvalue
p2/αg , and d − 1 transversal polarizations with eigenvalue

p2 + m2 + 2Nγ 4g2

p2 + M2 . (A5)

As the longitudinal polarizations contribute nothing but an
irrelevant constant, we only need to compute

Tr ln Rμν

= (d − 1) Tr ln

(
p2 + m2 + 2Nγ 4g2

p2 + M2

)

= (d − 1) Tr ln((p2 + m2)(p2 + M2) + 2Nγ 4g2)

− (d − 1) Tr ln(p2 + M2). (A6)

Writing 2Ng2γ 4 = λ4 and introducing the solutions of the
equation x2 + (M2 + m2)x + M2m2 + λ4 = 0, namely

x± = −1

2

(
m2 + M2 ±

√
(m2 − M2)2 − 4λ4

)
(A7)

this can be rewritten as

Tr ln Rμν

= (d − 1) Tr ln(p2 − x+)

+ (d − 1) Tr ln(p2 − x−)

− (d − 1) Tr ln(p2 + M2)

= 3

32π2 (m4 − 2λ4)

(
−2

ε
− 5

6

)

+ 3

32π2

(
x2+ ln

−x+
μ̄2 + x2− ln

−x−
μ̄2 − M4 ln

M2

μ̄2

)
.

(A8)

Putting it all together, we find

� = −4(N 2 − 1)γ 4
(

1 − 3

8

Ng2

16π2

)

+ 9(N 2 − 1)

13Ng2

m4

2
− 48(N 2 − 1)2

35Ng2

M4

2

+ (N 2 − 1)2

8π2 M4
(

−1 + ln
M2

μ̄2

)

+ 3(N 2 − 1)

64π2

(
−5

6
(m4 − 2λ4) + x2+ ln

−x+
μ̄2

+x2− ln
−x−
μ̄2 − M4 ln

M2

μ̄2

)
. (A9)

The full effective potential is thus finite in the limit ε → 0
at first order in g2, a nontrivial result and a strong indication
that the computation is consistent. One can also verify the
invariance of � under the renormalization group.
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