23 research outputs found

    Progress on Cryogenic Analytical STEM of Nanomaterials

    Get PDF

    Reaction pathways and textural aspects of the replacement of anhydrite by calcite at 25 °C

    Get PDF
    The replacement of sulfate minerals by calcium carbonate polymorphs (carbonation) has important implications in various geological processes occurring in Earth surface environments. In this paper we report the results of an experimental study of the interaction between anhydrite (100), (010), and (001) surfaces and Na₂CO₃ aqueous solutions under ambient conditions. Carbonation progress was monitored by glancing incidence X-ray diffraction (GIXRD) and scanning electron microscopy (SEM). We show that the reaction progresses through the dissolution of anhydrite and the simultaneous growth of calcite. The growth of calcite occurs oriented on the three anhydrite cleavage surfaces and its formation is accompanied by minor vaterite. The progress of the carbonation always occurs from the outer-ward to the inner-ward surfaces and its rate depends on the anhydrite surface considered, with the (001) surface being much more reactive than the (010) and (100) surfaces. The thickness of the formed carbonate layer grows linearly with time. The original external shape of the anhydrite crystals and their surface details (e.g., cleavage steps) are preserved during the carbonation reaction. Textural characteristics of the transformed regions, such as the gradation in the size of calcite crystals, from ~2 μm in the outer region to ~17 μm at the calcite-anhydrite interface, the local preservation of calcite crystalographic orientation with respect to anhydrite and the distribution of the microporosity mainly within the carbonate layer without development of any significant gap at the calcite-anhydrite interface. Finally, we compare these results on anhydrite carbonation with those on gypsum carbonation and can explain the differences on the basis of four parameters: (1) the molar volume change involved in the replacement process in each case, (2) the lack/existence of epitactic growth between parent and product phases, (3) the kinetics of dissolution of the different surfaces, and (4) the chemical composition (amount of structural water) of the parent phases

    Nanoscale compositional segregation and suppression of polar coupling in a relaxor ferroelectric

    Get PDF
    A number of relaxor ferroelectric ceramics have been demonstrated to possess a near stable value of relative permittivity over very wide temperature ranges. This cannot be explained by conventional theories of relaxors. One such system is based on the perovskite solid solution series: (1-x) (Ba₀.₈Ca₀.₂)TiO₃-xBi(Mg₀.₅Ti₀.₅)O₃, giving stable relative permittivity from 150 to 500 °C. We show by scanning transmission electron microscopy and electron energy loss spectroscopic elemental mapping that nanoscale compositional segregation occurs in the temperature stable relaxor composition (x = 0.55), with Ba/Ti clusters some 2–4 nm in extent, separated by Bi-rich regions of comparable size. This nanomosaic structure is consistent with phase separation into a ferroelectrically active BaTiO₃ – type phase (Ba/Ti rich) and a weakly polar Bi/(Mg) rich perovskite solid solution. The possibility that nanophase segregation is the cause of weak dipole coupling and suppression of the dielectric relaxation peak is considered

    In situ electron microscopy techniques for nanoparticle dispersion analysis of commercial sunscreen

    Get PDF
    Nanoparticles are common active ingredients within many commercial products including sunscreen. Consequently, accurate characterisation of nanoparticles in these products is vital to enhance product design, whilst also understanding the toxicological implications of these nanoparticles. Whilst bulk techniques are useful in providing some information, they often cannot resolve individual particles, and therefore electron microscopy can be used for high-resolution nanoparticle characterisation. However, conventional high vacuum dry TEM does not accurately represent nanoparticle dispersions and other in situ methods must be used. Here, we use a combination of techniques including liquid cell transmission electron microscopy (LCTEM), cryogenic (cryo)-TEM and cryo-scanning electron microscopy (SEM) to characterise a commercial sunscreen containing titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles. Our work illustrates that whilst LCTEM does not require any sample preparation more beam artefacts can occur causing ZnO dissolution with only TiO2 nanoparticles visualised. Comparatively, cryo-TEM allows characterisation of both ZnO and TiO2, yet only cryo-SEM could be used to analyse the pure product (without dilution) but biased the characterisation to the larger fraction of nanoparticles and agglomerates. Ultimately, only with a combination of different in situ EM techniques can an accurate characterisation of commercial products be achieved in order to ensure effective and safe product design and manufacture

    Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System

    Get PDF
    In the nacre or aragonite layer of the mollusk shell, proteomes that regulate both the early stages of nucleation and nano-to-mesoscale assembly of nacre tablets from mineral nanoparticle precursors exist. Several approaches have been developed to understand protein-associated mechanisms of nacre formation, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights, we have created a proportionally defined combinatorial model consisting of two nacre-associated proteins, C-RING AP7 (shell nacre, Haliotis rufescens) and pseudo-EF hand PFMG1 (oyster pearl nacre, Pinctada fucata), whose individual in vitro mineralization functionalities are well-documented and distinct from one another. Using scanning electron microscopy, flow cell scanning transmission electron microscopy, atomic force microscopy, Ca(II) potentiometric titrations, and quartz crystal microbalance with dissipation monitoring quantitative analyses, we find that both nacre proteins are functionally active within the same mineralization environments and, at 1:1 molar ratios, synergistically create calcium carbonate mesoscale structures with ordered intracrystalline nanoporosities, extensively prolong nucleation times, and introduce an additional nucleation event. Further, these two proteins jointly create nanoscale protein aggregates or phases that under mineralization conditions further assemble into protein–mineral polymer-induced liquid precursor-like phases with enhanced ACC stabilization capabilities, and there is evidence of intermolecular interactions between AP7 and PFMG1 under these conditions. Thus, a combinatorial model system consisting of more than one defined biomineralization protein dramatically changes the outcome of the in vitro biomineralization process

    On Biomineralization: Enzymes Switch on Mesocrystal Assembly

    Get PDF
    Cellular machineries guide the bottom-up pathways toward crystal superstructures based on the transport of inorganic precursors and their precise integration with organic frameworks. The biosynthesis of mesocrystalline spines entails concerted interactions between biomolecules and inorganic precursors; however, the bioinorganic interactions and interfaces that regulate material form and growth as well as the selective emergence of structural complexity in the form of nanostructured crystals are not clear. By investigating mineral nucleation under the regulation of recombinant proteins, we show that SpSM50, a matrix protein of the sea urchin spine, stabilizes mineral precursors via vesicle-confinement, a function conferred by a low-complexity, disordered region. Site-specific proteolysis of this domain by a collagenase initiates phase transformation of the confined mineral phase. The residual C-type lectin domain molds the fluidic mineral precursor into hierarchical mesocrystals identical to structural crystal modules constituting the biogenic mineral. Thus, the regulatory functions of proteolytic enzymes can guide biomacromolecular domain constitutions and interfaces, in turn determining inorganic phase transformations toward hybrid materials as well as integrating organic and inorganic components across hierarchical length scales. Bearing striking resemblance to biogenic mineralization, these hybrid materials recruit bioinorganic interactions which elegantly intertwine nucleation and crystallization phenomena with biomolecular structural dynamics, hence elucidating a long-sought key of how nature can orchestrate complex biomineralization processes

    The role of Mg in the crystallization of monohydrocalcite

    Get PDF
    Monohydrocalcite is a member of the carbonate family which forms in Mg-rich environments at a wide range of Mg/Ca ratios Mg 2+ aq/Ca 2+ aq ≥ 0.17 < 65. Although found in modern sedimentary deposits and as a product of biomineralization, there is a lack of information about its formation mechanisms and about the role of Mg during its crystallization. In this work we have quantitatively assessed the mechanism of crystallization of monohydrocalcite through in situ synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) and off-line spectroscopic, microscopic and wet chemical analyses. Monohydrocalcite crystallizes via a 4-stage process beginning with highly supersaturated solutions from which a Mg-bearing, amorphous calcium carbonate (ACC) precursor precipitates. This precursor crystallizes to monohydrocalcite via a nucleation-controlled reaction in stage two, while in stage three it is further aged through Ostwald-ripening at a rate of 1.8±0.1nm/h. In stage four, a secondary Ostwald ripening process (66.3±4.3nm/h) coincides with the release of Mg from the monohydrocalcite structure and the concomitant formation of minor hydromagnesite. Our data reveal that monohydrocalcite can accommodate significant amounts of Mg in its structure (χ=0.26) and that its Mg content and dehydration temperature are directly proportional to the saturation index for monohydrocalcite (SI) immediately after mixing the stock solutions. However, its crystallite and particle size are inversely proportional to these parameters. At high supersaturations (SI=3.89) nanometer-sized single crystals of monohydrocalcite form, while at low values (SI=2.43) the process leads to low-angle branching spherulites. Many carbonates produced during biomineralization form at similar conditions to most synthetic monohydrocalcites, and thus we hypothesize that some calcite or aragonite deposits found in the geologic record that have formed at high Mg/Ca ratios could be secondary in origin and may have originally formed via a metastable monohydrocalcite intermediate
    corecore