273 research outputs found

    Spin Chains in an External Magnetic Field. Closure of the Haldane Gap and Effective Field Theories

    Full text link
    We investigate both numerically and analytically the behaviour of a spin-1 antiferromagnetic (AFM) isotropic Heisenberg chain in an external magnetic field. Extensive DMRG studies of chains up to N=80 sites extend previous analyses and exhibit the well known phenomenon of the closure of the Haldane gap at a lower critical field H_c1. We obtain an estimate of the gap below H_c1. Above the lower critical field, when the correlation functions exhibit algebraic decay, we obtain the critical exponent as a function of the net magnetization as well as the magnetization curve up to the saturation (upper critical) field H_c2. We argue that, despite the fact that the SO(3) symmetry of the model is explicitly broken by the field, the Haldane phase of the model is still well described by an SO(3) nonlinear sigma-model. A mean-field theory is developed for the latter and its predictions are compared with those of the numerical analysis and with the existing literature.Comment: 11 pages, 4 eps figure

    Redundancy of classical and quantum correlations during decoherence

    Get PDF
    We analyze the time dependence of entanglement and total correlations between a system and fractions of its environment in the course of decoherence. For the quantum Brownian motion model we show that the entanglement and total correlations have rather different dependence on the size of the environmental fraction. Redundancy manifests differently in both types of correlations and can be related with induced--classicality. To study this we introduce a new measure of redundancy and compare it with the existing one.Comment: 6 pages, 4 figure

    Qubits in phase space: Wigner function approach to quantum error correction and the mean king problem

    Full text link
    We analyze and further develop a new method to represent the quantum state of a system of nn qubits in a phase space grid of N×NN\times N points (where N=2nN=2^n). The method, which was recently proposed by Wootters and co--workers (Gibbons {\it et al.}, quant-ph/0401155), is based on the use of the elements of the finite field GF(2n)GF(2^n) to label the phase space axes. We present a self--contained overview of the method, we give new insights on some of its features and we apply it to investigate problems which are of interest for quantum information theory: We analyze the phase space representation of stabilizer states and quantum error correction codes and present a phase space solution to the so--called ``mean king problem''.Comment: 18 pages, 16 figures; typos fixed, some minor corrections, figures of the circuits were change

    Finding critical points using improved scaling Ansaetze

    Full text link
    Analyzing in detail the first corrections to the scaling hypothesis, we develop accelerated methods for the determination of critical points from finite size data. The output of these procedures are sequences of pseudo-critical points which rapidly converge towards the true critical points. In fact more rapidly than previously existing methods like the Phenomenological Renormalization Group approach. Our methods are valid in any spatial dimensionality and both for quantum or classical statistical systems. Having at disposal fast converging sequences, allows to draw conclusions on the basis of shorter system sizes, and can be extremely important in particularly hard cases like two-dimensional quantum systems with frustrations or when the sign problem occurs. We test the effectiveness of our methods both analytically on the basis of the one-dimensional XY model, and numerically at phase transitions occurring in non integrable spin models. In particular, we show how a new Homogeneity Condition Method is able to locate the onset of the Berezinskii-Kosterlitz-Thouless transition making only use of ground-state quantities on relatively small systems.Comment: 16 pages, 4 figures. New version including more general Ansaetze basically applicable to all case

    Long-distance entanglement in spin systems

    Get PDF
    Most quantum system with short-ranged interactions show a fast decay of entanglement with the distance. In this Letter, we focus on the peculiarity of some systems to distribute entanglement between distant parties. Even in realistic models, like the spin-1 Heisenberg chain, sizable entanglement is present between arbitrarily distant particles. We show that long distance entanglement appears for values of the microscopic parameters which do not coincide with known quantum critical points, hence signaling a transition detected only by genuine quantum correlations.Comment: RevTex, 5 pages, 7 .eps figures Two references added in published versio

    Charmed Baryons with J=3/2J = 3/2

    Full text link
    The width of a recently discovered excited charmed-strange baryon, a candidate for a state Ξc\Xi_c^* with spin 3/2, is calculated. In the absence of configuration mixing between the ground-state (spin-1/2) charmed-strange baryon Ξc(a)\Xi_c^{(a)} and the spin-1/2 state Ξc(s)\Xi_c^{(s)} lying about 95 MeV above it, one finds Γ~(ΞcΞc(a)π)=(3/4)Γ~(ΞΞπ)\tilde \Gamma(\Xi^*_c \to \Xi_c^{(a)} \pi) = (3/4) \tilde \Gamma(\Xi^* \to \Xi \pi) and Γ~(ΞcΞc(s)π)=(1/4)Γ~(ΞΞπ)\tilde \Gamma(\Xi^*_c \to \Xi_c^{(s)} \pi) = (1/4) \tilde \Gamma(\Xi^* \to \Xi \pi), where the tilde denotes the partial width with kinematic factors removed. Assuming a kinematic factor for P-wave decay of pcm3p_{\rm cm}^3, one predicts Γ(ΞcΞc(a)π)=2.3\Gamma(\Xi^*_c \to \Xi_c^{(a)} \pi) = 2.3 MeV, while the ΞcΞc(s)π\Xi^*_c \to \Xi_c^{(s)} \pi channel is closed. Some suggestions are given for detecting the Σc\Sigma_c^*, the spin-3/2 charmed nonstrange baryon, and the Ωc\Omega_c^*, the spin-3/2 charmed doubly-strange baryon.Comment: 11 pages, latex, 2 uuencoded figures sent separatel

    A quantum gate array can be programmed to evaluate the expectation value of any operator

    Get PDF
    A programmable gate array is a circuit whose action is controlled by input data. In this letter we describe a special--purpose quantum circuit that can be programmed to evaluate the expectation value of any operator OO acting on a space of states of NN dimensions. The circuit has a program register whose state Ψ(O)>P|\Psi(O)>_P encodes the operator OO whose expectation value is to be evaluated. The method requires knowledge of the expansion of OO in a basis of the space of operators. We discuss some applications of this circuit and its relation to known instances of quantum state tomography.Comment: 4 pages, 3 figures include

    Heavy Flavour Baryons in Hyper Central Model

    Full text link
    Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hyper central description of the three-body problem. The confinement potential is assumed as hyper central coulomb plus power potential with power index υ\upsilon. The ground state masses of the heavy flavor, JP=1/2+J^P={1/2}^+ and 3/2+{3/2}^+ baryons are computed for different power index, ν \nu starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index ν=1.0\nu=1.0.Comment: 10 pages, 4 figure

    Quasiprobability distribution functions for periodic phase-spaces: I. Theoretical Aspects

    Full text link
    An approach featuring ss-parametrized quasiprobability distribution functions is developed for situations where a circular topology is observed. For such an approach, a suitable set of angle-angular momentum coherent states must be constructed in appropriate fashion.Comment: 13 pages, 3 figure

    Band Distributions for Quantum Chaos on the Torus

    Get PDF
    Band distributions (BDs) are introduced describing quantization in a toral phase space. A BD is the uniform average of an eigenstate phase-space probability distribution over a band of toral boundary conditions. A general explicit expression for the Wigner BD is obtained. It is shown that the Wigner functions for {\em all} of the band eigenstates can be reproduced from the Wigner BD. Also, BDs are shown to be closer to classical distributions than eigenstate distributions. Generalized BDs, associated with sets of adjacent bands, are used to extend in a natural way the Chern-index characterization of the classical-quantum correspondence on the torus to arbitrary rational values of the scaled Planck constant.Comment: 12 REVTEX page
    corecore