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Quantum gate arrays can be programmed to evaluate the expectation value of any operator
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A programmable gate array is a circuit whose action is controlled by input data. In this paper we describe a
special-purpose quantum circuit that can be programmed to evaluate the expectation value of any@perator
acting on a space of states Mfdimensions. The circuit has a program register whose Bat®) ), encodes
the operato© whose expectation value is to be evaluated. The method requires knowledge of the expansion of
O in a basis of the space of operators. We discuss some applications of this circuit and its relation to known
instances of quantum state tomography.
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I. INTRODUCTION surement of the polarization of the auxiliary qubit. We will
describe how to construct these circuits and exhibit an inter-

An important feature of classical computers is that theyesting example: a programmable array to efficiently solve a
can be programmed. That is to say, a fixed universal devicelass of quantum decision problems concerning properties of
can perform different tasks depending on the state of som@uantum phase space distributions. The paper is organized as
input registers. These registers define the program the devidellows. In Sec. Il we review a tomographic scheme based on
is executing. Quantum computdrs| have a rather different the use of the so-called scattering circuit, which is the basis
property. Thus, Nielsen and Chuang established in Rgf. of our method. In Sec. Ill we show how to build program-
that a general purpose programmable quantum computépable tomographic devices and how to transform them into
does not exist. Such a device would have to have the followprogrammable multimeters, whose output is the expectation
ing features. It should consist of a fixed gate array with avalue of an arbitrary operator. In Sec. IV we present an ex-
data register and a program register. The array should wor&mple of the use of our method to determine averages of
in such a way that the state of the program register encodgdase-space distributions over several phase space regions.
the unitary operatat/ that is applied to the state of the data Finally we present our conclusions in Sec. V.
register. As shown in Ref2], such devices cannot be uni-
versal since different unitary operators require orthogonal
states of the program register. However, some interesting ex-
amples of programmable devices could still be constructed.
For example, nondeterministic programmable gate arrays The quantum gate arrays discussed in this paper are de-
were first considered in Ref2] and analyzed later in a va- signed using the “scattering circuit” shown in Fig. 1 as a
riety of example$3]. More recently, quantum “multimeters” simple primitive. In such circuit a system, initially in the
were introduced and discussed in Refl. Such devices are statep, is brought in contact with an ancillary qubit prepared
fixed gate arrays acting on a data register and a prograimn the state|0). This ancilla acts as a probe particle in a
register, together with a final fixed projective measuremenscattering experiment. The algorithm consists of the follow-
on the composite system. They are programmable quantuing steps:(i) Apply a Hadamard transforid to the ancillary
measurement devic¢d] that act either nondeterministically qubit. Since H|0)=(|0)+|1))/y2 and H|1)=(]0)
or in an approximate waysee Ref[5]). —|1))/42, the new state of the qubit i$Q)+|1))/2. (ii)

In this paper we will describe a different kind of program- apply a “controlled-A" operator, which does nothing if the
mable quantum gate array that is useful to solve the follow-

II. STATE TOMOGRAPHY USING THE SCATTERING
CIRCUIT

ing problem. Suppose that we are given an oper@tacting

on aN-dimensional Hilbert space and a quantum stat8y [0> @ @_

this we mean that someone supplies us with many copies of < , 7
a quantum system prepared in the same siad@d defines

for us the operatoD by specifying its expansion in a basis of <o, >

the space of operators. Our task is to compute the expecta-
tion value ofO in the statep. We will show that it is possible

to construct a programmable circuit that evaluates such ex- p A
pectation value by measuring the polarization of a single
qubit. The inputs of such circuit are a data register, a pro-
gram register, and an auxiliary qubit. The circuit evaluates F|G. 1. The scattering circuit that can be used to evaluate real
the expectation value of an opera@r(specified by the pro- and imaginary parts of the expectation valuegj for a unitary
gram registerin the quantum statg of the data register. The operatorA. H denotes a Hadamard transform. The “controlled-A”
expectation value Tg(O) is obtained by performing a mea- operation is such that (ctd)|q)|¥)=|q)A%|¥).
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state of the ancilla if0) and applies the unitary operatato
. . . |0> ) o o — -
the system if the ancilla is in stafé). (i) Apply another
Hadamard gate to the ancilla and perform measurements of
its spin polarizations along the andy axes. Given suffi- lq> ®

ciently many independent instances of the experiment, the

measurements yield the expectation valies and(o) of
the Pauli spin operators, and oy . This algorithm has the Ip> Va ®
following remarkable property:
(0)=ReTr(Ap)], (o,)=Im[Tr(Ap)]. 1) p v H R, H U

Different versions of this circuit play an important role in
many quantum algorithm®$—9]. In particular, the scattering FIG. 2. Programmable gate array evaluatingoA(q,p)) from
circuit was recently used as a basic tool to interpret tomogthe polarization of the first qubit. The program state|¥)p

raphy and spectroscopy as two dual forms of the same quar=|a)|p). All “controlled—O” operators act as: (ct®)|n)|¥)
tum computatiorf10]. =|n)O"|¥). Uy (V) are cyclic shift operators in the computa-

For our purpose it is useful to review how to use thistional (conjugatedl basis of aK-di_menfsionaI space. A_subs_crip_t in
scattering circuit as a primitive to design a tomogragher, an operator denotes the dimensionality of the space in which it acts.
a device that after a number of experiments determines the
guantum state of the systenfs a consequence of E¢l),
we see that every time we run the algorithm for a knownwill assume that we know how to expafin a basis such
operatorA, we extract information about the stgie Doing  gs the one used abov® =3, ,0(q,p)A(d,p). As the op-
so for a complete basis of operatd#s(e)}, one gets com-  eratorsA(q,p) are not only unitary but also Hermitian, the
plete information and determines the full density matrix. Dif- rea| and imaginary parts of the complex coefficients, p)
ferent tomographic schemes are characterized by the basis géfine the expansion of the Hermitian and anti-Hermitian
operatorsA(«a) they use. Of course, completely determining pieces ofO in the basisA(qg,p). The expectation value of

the quantum state requires an exponential amount of r&pege tyo pieces can be evaluated separately using the pro-
sources. In fact, if the dimensionality of the Hilbert space of .. \1e described belogthe results can then be combined to
the system id\, then the <_:omp|ete deter_mlna'qon_of the quan-_get the expectation dD). So, in what follows we will as-

tum state involves running the scattering circuit for a com sume that the operator at hand is Hermitian and that the
plete basis oN* operatorsA(a). However, evaluating any coefficients of its expansion in the basi{q,p) are real

coefficient of the decomposition @fin a given basis can be . o :
done efficiently provided that the operatoA§a) can be numbers. To introduce our method, it is convenient to note

implemented by efficient networks. A convenient basis set idirst that the evaluation of the expectation value of the op-

defined agsee, for example, Ref§10,11) eratorsA(q,p) can be done using a programmable circuit
that is independent af and p. Such circuit is illustrated in
A(a)=A(q,p)=UIRV Pexp(impg/N). (2 Fig. 2. This is an application of the scattering circuit shown

_ _ in Fig. 1 with two program registers used to encode the val-
Here, bothq andp are integers between 0 ah-1, Uisa  ues ofq and p. When the quantum state of the program is
cyclic shift operator in the computational basid|0)=|n  |¥),=|q)|p) the circuit evaluates the expectation value of
+1)), Vis the cyclic shift operator in the basis related to theA(q,p)_ This is accomplished by letting the program regis-
computational one via the discrete Fourier transform, Bnd (g5 to act as controls of the operatdysand V (which, as
is the reflection operatorR(n)=|N—n)). It is straightfor- 1 anioned, generate cyclic shifts either in the computational
ward to show that the operatofgq,p) are Hermitian, uni- o i the conjugated bagisThus, the action of the circuit is
tary, and form a _complete orthonormal basis of the space Oguch that when the auxiliary qubit is in stdie) (o=0,1)
Operators satisfying and the state of the program|is)|p), the operatoA“(q,p)
TIA(@)A(a’)]=N Sn(q’ —a)Sn(p’ — D), 3 is applied to the system register. The network in Fig. 2 is
[Ala)Ala’)] N(A A on(p"—P) @ efficient since it can be built using a number of elementary

where 8y(x) is the periodic Kronecker delta function that is 9ates which scales polynomially with Ig@) [11].

equal to one ik=0 (moduloN) and vanishes otherwigéhe The circuit has an obvious property. Different states
above operators form a “quorum,” as defined in R@f2]).  |d)[p) are used to program the evaluation of the expectation
With this choice forA(q,p), the scattering circuit directly Value of orthogonal operator&(q,p). It is clear that by
evaluates the discrete Wigner functift0,11,13,12 restricting to such program states one has no real advantage

with respect to the case in whichandp are stored as clas-
sical information. However, we can use more general pro-
gram states. If the program register is in the stabp
=3,.pc(a,p)|a)|p), then the same circuit evaluates the ex-

We will now show how to design a programmable gatepectation value of a linear combination of the operators
array to evaluate the expectation value of any opef@tde  A(q,p) since the final polarization is

Ill. PROGRAMMABLE TOMOGRAPHERS AND
PROGRAMMABLE MULTIMETERS
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state that needs to be prepared i§V)p

10> — =3qpc(a.p)|a)|p)l¢(a,p)) [where ¢(q,p)=0 or 1].
Thus, the coefficients of the expansion ©f in the basis
la> A(q,p) define the program stateV), required to measure
its expectation value. It is clear that in most cases the method
lp> A/ ® will not be efficient. For example, both the task of defining
the operator by specifying the coefficiemt&, p) as well as
| ap) 4 the preparation of the program stgd¥), are likely to be
- inefficient. The existence of efficient networks to implement
P VVHRyH U — “controlled—A(q,p)” operations is a less stringent condi-

tions that is fulfilled by the basis defined in E@) [11].

FIG. 3. Programmable gate array evaluatingsD] from the Having said this, it is Wo_rt_h noting that th_ere are sets of
polarization of the first qubit. The program state @),  Problems that can be efficiently solved using this method.
=3,.,¢(a,p)|a)|p)|®(q,p)), wherec(q,p) and ®(q,p) define We will now describe one such example.
the polar decomposition of the coefficientso(q,p)
=Tr(OA(q,p))/N. IV. AN APPLICATION: EVALUATING AVERAGES OF

PHASE-SPACE DISTRIBUTIONS

(a)=Tr p>, |lc(q,p)|2A(q,p) |- (4) We will show that the circuits of Figs. 2 and 3 can be
a.p easily adapted to evaluate the sum of values of the Wigner
function over various phase-space domains. The program
Equation (4) shows that this algorithm can be used to register is used to define the domain over which the Wigner
evaluate the expectation value of any operator that can binction is averaged. If the domain is a line, the algorithm
written as a convex sum of the basis A¢t),p). This is not  Just evaluates the probability for the occurrences of the re-
general enough since the expansion of a Hermitian operat§ults of the measurement of a family of observablese
can include negative coefficients. For this purpose thd€low. However, for more general domairisuch as line
method can be extended as follows: The most general Hefe€gments, parallelograms, etthe circuit evaluates proper-
mitian operator can be expressed in the bagig,p) asO ties that characterize a quantum state that cannot be simply
=3, 0c%(a,p)expli m#(q,p))A(q,p), where c(q,p) is a casted in terms of probabilities. In this sense the circuit is as
real number andp(q,p) is either 0 or 1[4(q,p) simply @ Programmable tomographer measuring various features of
stores the information about the sign of each coeffidiahe ~ Phase-space distributions. Before going into more details let
will assume thats, ,c%(q,p) =1 (if this is not the case we US briefly review some properties of Wigner functions. Dis-
can always renormalize the coefficientSor operators with ~ créte Wigner functions can be used to represent the quantum
some negative coefficients we can use a third register corstate of a system in phase spate,11,13,14 For a system
sisting of a single qubit to storé(q,p). The circuit evalu-  With an N-dimensional space of states such function is de-
ating the expectation value @ is shown in Fig. 3. The first fined on a lattice of RIX 2N points (g, p) where bothq and
two program registers stoandp and are used exactly in P take values between 0 andNz-1 (only NXN of these
the same way as above. The third one, stork(g,p), is values are independgntAt each phase-space point the
acted upon with ar, operator, introducing the required phase Wigner function is defined in terms of the operatéi, p)
exp(m(q,p). Then, if the state of the program register is 9iven in Eq.(2) as

W)p=34,¢(a.p)|Q)|P)|4(a.p)). the final polarization .
measurement turns out to be W(q,p)= mTr(A(q,p)p). (6)

(o,)=Tr| p>, c%(q,p)e™*@PA(q,p) | =Tr(pO). (5) As mentioned above, the measurement of this function can
a.p be done by using the scattering circfd0] or the program-
mable gate array of Fig. 2. The program register encodes the
Summarizing, we showed that the measurement of thgalue of g and p. In general, if the program state [¥)p
expectation value of any operat@ can be done using a =X ,c(q,p)|a)|p), the final polarization measurement is
programmable gate array. The hardware architecture is assoaz>=2N2qp|c(q,p)|2W(q,p). Thus, the program defines
ciated with the particular choice of basi§q,p), which is  the region over which we average the value of the Wigner
just a matter of convenience, and is independenDofThe  function.
software used to program the array is obviously determined In general, preparing the program state associated with a
by the choice of hardware. The expectation values of th@eneral phase-space region can be complicated. However,
Hermitian and anti-Hermitian parts of the operatrare there are simple procedures to prepare the program states
computed separately using a method that requires knowledgmrresponding to general lines, segments, and parallelo-
of the expansion of these operators in the baig,p). If grams. Let us begin with the simplest case: For the program
the coefficients in the expansion are written a&j,p) state|\I’)p=Eq|q>|p0)/\/m, it is clear that the final polar-
=Tr(OA(q,p))/N=c?(q,p)explim$(q,p)), the program ization measurement reveals the sum of values of the Wigner
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function along the horizontal line defined @s=py, i.e., programmable gate array evaluates probabilities for the pos-
(0,)=24W(0,po). Other program states are easy to preparesible results of a set of measurements.

For example, the state programming the evaluation of the Lines are a special case since more general phase-space
average Wigner function along the line defined by the equadomains cannot be associated with projection operators.
tion g—p=0, mod(N), is the generalized Bell stat’)r  However, it is clear that the method described above can be
=3 |a)|g)/v2N, which can be efficiently prepared. A natu- applied to efficiently prepare program states for other phase-
ral question then arises: How hard is to program the evaluaspace domains such as gendtited) parallelograms. One

tion of the average Wigner function along an arbitrary line%first trivially prepare the program state for a parallelogram
To answer this question it turns out to be useful to apply gimited by vertical and horizontal segments and later tilt it
method which is based on a rather interesting property of,p|ying the strategy based on the use of cat maps that was
cﬁscrete Wigner functlon_s. In fact, the discrete Wigner func-yeoscribed above. Other simple phase-space regions can also
tions transform “classically” when the quantum staté o hrogrammed using variations of this method. It is also
evolves under a §peC|aI class of umEary tranSfc’rmat'onsjnteresting to note that using variations of the circuit shown
These transformations are known as “quantum cat maps:

o . ~in Fig. 3 we can also subtract values of the Wigner function
and correspond to the quantization of linear transformations 9 9

on the torus. For example, consider the following linear" dlfferent phasg—space I’e.gIOI(Wh.ICh could be useful if
transformation of the phase space grid: one is interested in comparing their valyes

q=bq +p’, p=(ab—1)q'+ap’, (7 V. CONCLUSIONS

In this paper we established the existence of a gate array

:;’21?0?”?230?1 3\:2 g:s%zrssc;c-ir;[g;su::Eg?r’oa;ea'prﬁsjr:\il_mg’that can be programmed to evaluate the expectation value of
yop any operator acting on aN-dimensional Hilbert space. The

tary operator is known as a quantum cat map and is paramex ectation value is obtained by measuring the polarization
etrized by the integera andb, see Ref[11] for detail9. The P y 9 b

. ) . of a single auxiliary qubit. As an example, we showed how
unitary operator is such that the state evolves in such a way, program the evaluation of sums of values of the discrete
that the discrete Wigner function “flows” according to the Wi functi . imole phase- d ins. It
rule given in Eq(7), i.e. Wigner function over various simple phase-space domains.

is important to mention that our method is only efficient to
determine if the sum of the Wigner function in a phase space
W(q’,p’,t+1)=W(q,p,t). (8)  domain[with up to o(N) pointg is greater than a fixed,
N-independent, threshol@ince this does not require expo-
nential precision This is a “quantum decision problem”
whose input datégencoded in the system'’s stagi¢ is inher-
ently quantum. Due to the nature of the input data, this prob-
lem cannot even be formulated on a classical computer. In-
Yerest in problems with quantum input data have recently
increased, partly due to their significance in connection with
the potential detection of entanglemdd6-17 as well as
fheir relation with tomographic problems like the one de-
scribed here. The problem of evaluating the expectation
value of a Hermitian operator with a quantum circuit of fixed
architecture was addressed in REE6]. However, for the
method to be applied one requires knowledge of the spec-
trum of the operatofor at least of its lowest eigenvaluand
the ability to prepare a state which, up to a rescaling, is
proportional to the operato®. As mentioned above, the
method we propose would apply in a slightly different situ-
ation where the information about the operator is restricted to
the knowledge of the coefficients of its expansion in a given
basis(of course, given such information one could compute
the spectrum with an exponentially large overheddhe ex-

The linear transformatiort7) maps lines into lines. There-
fore, if we want to evaluate the average Wigner function
along an arbitrary lind. we can use the following strategy:
One can first transform the state with the appropriate unitar
operator that maps the lineinto a line for which the pro-
gram state is easy to prepdfer example, a vertical line, or
a line defined by the equatiog—p=c). Then, one can
evaluate the average of the Wigner function along the “easy
line using the method discussed abd@wéth a program state
that is easy to prepareFor the method to be practical we
still need to show that one can efficiently find the linear
transformation(7) mapping an arbitrary lind., defined by
the equatiom;q+n,p=ng, into the lineq+p=n; (whose
program state is easy to preparg&his can be done as fol-
lows: If eithern, or n, are odd numbers the line has 2N
points and the parameters of the linear transformation
mappingL to the line defined byg+p=n; areb=1+n,,
n,a=1-n; (similar results can be obtained when bath
andn, are eveh Finally, we should mention that the method

can be made fully programmable by adding extra registers t?ension of some of the above results to continuous variables

store the integerb andc parametrizing any cat map. is still under investigatio17]. After completing this work

. Evgluatln.g sums of ngner functions over p_hase—spacgNe became aware of the related approach to the construction
lines is particularly interesting because of a crucial property, quantum universal detectors presented in ]
of such functions. Thus, adding/(q,p) along the lineap '

—bg=c one obtains the probability to detect the eigenstate We acknowledge useful discussion with Marcos Saraceno.
of the translation operatdF(b,a)=U?3V" exp(mab/N) with  This work was partially supported with grants from Ubacyt,
eigenvalue expgc/N). As a consequence, in this case theAnpcyt, Conicet, and FundagioAntorchas.
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