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Quantum gate arrays can be programmed to evaluate the expectation value of any operator

Juan Pablo Paz1,2 and Augusto Roncaglia1

1Departamento de Fı´sica ‘‘J.J. Giambiagi,’’ FCEN, UBA, Pabello´n 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
2Theoretical Division, LANL, MSB213, Los Alamos, New Mexico 87545, USA

~Received 18 December 2002; published 21 November 2003!

A programmable gate array is a circuit whose action is controlled by input data. In this paper we describe a
special-purpose quantum circuit that can be programmed to evaluate the expectation value of any operatorO
acting on a space of states ofN dimensions. The circuit has a program register whose stateuC(O)&P encodes
the operatorO whose expectation value is to be evaluated. The method requires knowledge of the expansion of
O in a basis of the space of operators. We discuss some applications of this circuit and its relation to known
instances of quantum state tomography.
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I. INTRODUCTION

An important feature of classical computers is that th
can be programmed. That is to say, a fixed universal de
can perform different tasks depending on the state of so
input registers. These registers define the program the de
is executing. Quantum computers@1# have a rather differen
property. Thus, Nielsen and Chuang established in Ref.@2#
that a general purpose programmable quantum comp
does not exist. Such a device would have to have the foll
ing features. It should consist of a fixed gate array with
data register and a program register. The array should w
in such a way that the state of the program register enco
the unitary operatorU that is applied to the state of the da
register. As shown in Ref.@2#, such devices cannot be un
versal since different unitary operators require orthogo
states of the program register. However, some interesting
amples of programmable devices could still be construc
For example, nondeterministic programmable gate arr
were first considered in Ref.@2# and analyzed later in a va
riety of examples@3#. More recently, quantum ‘‘multimeters’
were introduced and discussed in Ref.@4#. Such devices are
fixed gate arrays acting on a data register and a prog
register, together with a final fixed projective measurem
on the composite system. They are programmable quan
measurement devices@4# that act either nondeterministicall
or in an approximate way~see Ref.@5#!.

In this paper we will describe a different kind of program
mable quantum gate array that is useful to solve the follo
ing problem. Suppose that we are given an operatorO acting
on aN-dimensional Hilbert space and a quantum stater. By
this we mean that someone supplies us with many copie
a quantum system prepared in the same stater and defines
for us the operatorO by specifying its expansion in a basis
the space of operators. Our task is to compute the expe
tion value ofO in the stater. We will show that it is possible
to construct a programmable circuit that evaluates such
pectation value by measuring the polarization of a sin
qubit. The inputs of such circuit are a data register, a p
gram register, and an auxiliary qubit. The circuit evalua
the expectation value of an operatorO ~specified by the pro-
gram register! in the quantum stater of the data register. The
expectation value Tr(rO) is obtained by performing a mea
1050-2947/2003/68~5!/052316~5!/$20.00 68 0523
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surement of the polarization of the auxiliary qubit. We w
describe how to construct these circuits and exhibit an in
esting example: a programmable array to efficiently solv
class of quantum decision problems concerning propertie
quantum phase space distributions. The paper is organize
follows. In Sec. II we review a tomographic scheme based
the use of the so-called scattering circuit, which is the ba
of our method. In Sec. III we show how to build program
mable tomographic devices and how to transform them i
programmable multimeters, whose output is the expecta
value of an arbitrary operator. In Sec. IV we present an
ample of the use of our method to determine averages
phase-space distributions over several phase space reg
Finally we present our conclusions in Sec. V.

II. STATE TOMOGRAPHY USING THE SCATTERING
CIRCUIT

The quantum gate arrays discussed in this paper are
signed using the ‘‘scattering circuit’’ shown in Fig. 1 as
simple primitive. In such circuit a system, initially in th
stater, is brought in contact with an ancillary qubit prepare
in the stateu0&. This ancilla acts as a probe particle in
scattering experiment. The algorithm consists of the follo
ing steps:~i! Apply a Hadamard transformH to the ancillary
qubit. Since Hu0&5(u0&1u1&)/A2 and Hu1&5(u0&
2u1&)/A2, the new state of the qubit is (u0&1u1&)/A2. ~ii !
Apply a ‘‘controlled–A’’ operator, which does nothing if the

FIG. 1. The scattering circuit that can be used to evaluate
and imaginary parts of the expectation value Tr(rA) for a unitary
operatorA. H denotes a Hadamard transform. The ‘‘controlled-A
operation is such that (ctrl-A)uq&uC&5uq&AquC&.
©2003 The American Physical Society16-1
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state of the ancilla isu0& and applies the unitary operatorA to
the system if the ancilla is in stateu1&. ~iii ! Apply another
Hadamard gate to the ancilla and perform measuremen
its spin polarizations along thez and y axes. Given suffi-
ciently many independent instances of the experiment,
measurements yield the expectation values^sz& and^sy& of
the Pauli spin operatorssz and sy . This algorithm has the
following remarkable property:

^sz&5Re@Tr~Ar!#, ^sy&5Im@Tr~Ar!#. ~1!

Different versions of this circuit play an important role
many quantum algorithms@6–9#. In particular, the scattering
circuit was recently used as a basic tool to interpret tom
raphy and spectroscopy as two dual forms of the same q
tum computation@10#.

For our purpose it is useful to review how to use th
scattering circuit as a primitive to design a tomographer~i.e.,
a device that after a number of experiments determines
quantum state of the system!. As a consequence of Eq.~1!,
we see that every time we run the algorithm for a kno
operatorA, we extract information about the stater. Doing
so for a complete basis of operators$A(a)%, one gets com-
plete information and determines the full density matrix. D
ferent tomographic schemes are characterized by the bas
operatorsA(a) they use. Of course, completely determini
the quantum state requires an exponential amount of
sources. In fact, if the dimensionality of the Hilbert space
the system isN, then the complete determination of the qua
tum state involves running the scattering circuit for a co
plete basis ofN2 operatorsA(a). However, evaluating any
coefficient of the decomposition ofr in a given basis can be
done efficiently provided that the operatorsA(a) can be
implemented by efficient networks. A convenient basis se
defined as~see, for example, Refs.@10,11#!

A~a!5A~q,p!5UqRV2p exp~ ippq/N!. ~2!

Here, bothq andp are integers between 0 andN21, U is a
cyclic shift operator in the computational basis (Uun&5un
11&), V is the cyclic shift operator in the basis related to t
computational one via the discrete Fourier transform, anR
is the reflection operator (Run&5uN2n&). It is straightfor-
ward to show that the operatorsA(q,p) are Hermitian, uni-
tary, and form a complete orthonormal basis of the spac
operators satisfying

Tr@A~a!A~a8!#5N dN~q82q!dN~p82p!, ~3!

wheredN(x) is the periodic Kronecker delta function that
equal to one ifx50 ~moduloN) and vanishes otherwise~the
above operators form a ‘‘quorum,’’ as defined in Ref.@12#!.
With this choice forA(q,p), the scattering circuit directly
evaluates the discrete Wigner function@10,11,13,14#.

III. PROGRAMMABLE TOMOGRAPHERS AND
PROGRAMMABLE MULTIMETERS

We will now show how to design a programmable ga
array to evaluate the expectation value of any operatorO. We
05231
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will assume that we know how to expandO in a basis such
as the one used above:O5(q,po(q,p)A(q,p). As the op-
eratorsA(q,p) are not only unitary but also Hermitian, th
real and imaginary parts of the complex coefficientso(q,p)
define the expansion of the Hermitian and anti-Hermit
pieces ofO in the basisA(q,p). The expectation value o
these two pieces can be evaluated separately using the
cedure described below~the results can then be combined
get the expectation ofO). So, in what follows we will as-
sume that the operator at hand is Hermitian and that
coefficients of its expansion in the basisA(q,p) are real
numbers. To introduce our method, it is convenient to n
first that the evaluation of the expectation value of the o
eratorsA(q,p) can be done using a programmable circ
that is independent ofq and p. Such circuit is illustrated in
Fig. 2. This is an application of the scattering circuit show
in Fig. 1 with two program registers used to encode the v
ues ofq and p. When the quantum state of the program
uC&P5uq&up& the circuit evaluates the expectation value
A(q,p). This is accomplished by letting the program reg
ters to act as controls of the operatorsU and V ~which, as
mentioned, generate cyclic shifts either in the computatio
or in the conjugated basis!. Thus, the action of the circuit is
such that when the auxiliary qubit is in stateus& (s50,1)
and the state of the program isuq&up&, the operatorAs(q,p)
is applied to the system register. The network in Fig. 2
efficient since it can be built using a number of element
gates which scales polynomially with log2(N) @11#.

The circuit has an obvious property. Different stat
uq&up& are used to program the evaluation of the expecta
value of orthogonal operatorsA(q,p). It is clear that by
restricting to such program states one has no real advan
with respect to the case in whichq andp are stored as clas
sical information. However, we can use more general p
gram states. If the program register is in the stateuC&P
5(q,pc(q,p)uq&up&, then the same circuit evaluates the e
pectation value of a linear combination of the operat
A(q,p) since the final polarization is

ρ

| p >

| q >

| 0 > H

UV

H

V
2N

N NNR
-1

FIG. 2. Programmable gate array evaluating Tr„rA(q,p)… from
the polarization of the first qubit. The program state isuC&P

5uq&up&. All ‘‘controlled–O’’ operators act as: (ctrl-O)un&uC&
5un&OnuC&. UK (VK) are cyclic shift operators in the computa
tional ~conjugated! basis of aK-dimensional space. A subscript i
an operator denotes the dimensionality of the space in which it a
6-2
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QUANTUM GATE ARRAYS CAN BE PROGRAMMED TO . . . PHYSICAL REVIEW A68, 052316 ~2003!
^sz&5TrS r(
q,p

uc~q,p!u2A~q,p! D . ~4!

Equation ~4! shows that this algorithm can be used
evaluate the expectation value of any operator that can
written as a convex sum of the basis setA(q,p). This is not
general enough since the expansion of a Hermitian oper
can include negative coefficients. For this purpose
method can be extended as follows: The most general H
mitian operator can be expressed in the basisA(q,p) as O
5(q,pc2(q,p)exp„ipf(q,p)…A(q,p), where c(q,p) is a
real number andf(q,p) is either 0 or 1@f(q,p) simply
stores the information about the sign of each coefficient#. We
will assume that(q,pc2(q,p)51 ~if this is not the case we
can always renormalize the coefficients!. For operators with
some negative coefficients we can use a third register c
sisting of a single qubit to storef(q,p). The circuit evalu-
ating the expectation value ofO is shown in Fig. 3. The first
two program registers storeq andp and are used exactly in
the same way as above. The third one, storingf(q,p), is
acted upon with asz operator, introducing the required pha
exp(ipf(q,p)). Then, if the state of the program register
uC&P5(q,pc(q,p)uq&up&uf(q,p)&, the final polarization
measurement turns out to be

^sz&5TrS r(
q,p

c2~q,p!eipf(q,p)A~q,p! D 5Tr~rO!. ~5!

Summarizing, we showed that the measurement of
expectation value of any operatorO can be done using a
programmable gate array. The hardware architecture is a
ciated with the particular choice of basisA(q,p), which is
just a matter of convenience, and is independent ofO. The
software used to program the array is obviously determi
by the choice of hardware. The expectation values of
Hermitian and anti-Hermitian parts of the operatorO are
computed separately using a method that requires knowle
of the expansion of these operators in the basisA(q,p). If
the coefficients in the expansion are written aso(q,p)
5Tr„OA(q,p)…/N5c2(q,p)exp„ipf(q,p)…, the program

FIG. 3. Programmable gate array evaluating Tr(rO) from the
polarization of the first qubit. The program state isuC&P

5(q,pc(q,p)uq&up&uF(q,p)&, where c(q,p) and F(q,p) define
the polar decomposition of the coefficientso(q,p)
5Tr„OA(q,p)…/N.
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state that needs to be prepared isuC&P
5(q,pc(q,p)uq&up&uf(q,p)& @where f(q,p)50 or 1].
Thus, the coefficients of the expansion ofO in the basis
A(q,p) define the program stateuC&P required to measure
its expectation value. It is clear that in most cases the met
will not be efficient. For example, both the task of definin
the operator by specifying the coefficientso(q,p) as well as
the preparation of the program stateuC&P are likely to be
inefficient. The existence of efficient networks to impleme
‘‘controlled–A(q,p)’’ operations is a less stringent cond
tions that is fulfilled by the basis defined in Eq.~2! @11#.
Having said this, it is worth noting that there are sets
problems that can be efficiently solved using this meth
We will now describe one such example.

IV. AN APPLICATION: EVALUATING AVERAGES OF
PHASE-SPACE DISTRIBUTIONS

We will show that the circuits of Figs. 2 and 3 can b
easily adapted to evaluate the sum of values of the Wig
function over various phase-space domains. The prog
register is used to define the domain over which the Wig
function is averaged. If the domain is a line, the algorith
just evaluates the probability for the occurrences of the
sults of the measurement of a family of observables~see
below!. However, for more general domains~such as line
segments, parallelograms, etc.! the circuit evaluates proper
ties that characterize a quantum state that cannot be sim
casted in terms of probabilities. In this sense the circuit is
a programmable tomographer measuring various feature
phase-space distributions. Before going into more details
us briefly review some properties of Wigner functions. D
crete Wigner functions can be used to represent the quan
state of a system in phase space@10,11,13,14#. For a system
with an N-dimensional space of states such function is
fined on a lattice of 2N32N points (q,p) where bothq and
p take values between 0 and 2N21 ~only N3N of these
values are independent!. At each phase-space point th
Wigner function is defined in terms of the operatorsA(q,p)
given in Eq.~2! as

W~q,p!5
1

2N
Tr„A~q,p!r…. ~6!

As mentioned above, the measurement of this function
be done by using the scattering circuit@10# or the program-
mable gate array of Fig. 2. The program register encodes
value of q and p. In general, if the program state isuC&P
5(q,pc(q,p)uq&up&, the final polarization measurement
^sz&52N(qpuc(q,p)u2W(q,p). Thus, the program define
the region over which we average the value of the Wig
function.

In general, preparing the program state associated wi
general phase-space region can be complicated. Howe
there are simple procedures to prepare the program s
corresponding to general lines, segments, and parall
grams. Let us begin with the simplest case: For the prog
stateuC&P5(quq&up0&/A2N, it is clear that the final polar-
ization measurement reveals the sum of values of the Wig
6-3



re
th
u

-
lu
e?
y

o
c

te
n
ps
on
a

g

am

w
e

-
on
:

ta

r

sy

e
a

-

d
s

ac
rt

at

he

os-

pace
ors.

be
se-

m
it
was
also

lso
wn
ion

rray
e of
e
tion
ow
ete
s. It
to
ace
,
-

’’

ob-
In-
tly
ith

e-
ion
d

ec-

is

u-
to

en
te

bles

tion

no.
yt,

J. P. PAZ AND A. RONCAGLIA PHYSICAL REVIEW A68, 052316 ~2003!
function along the horizontal line defined asp5p0, i.e.,
^sz&5(qW(q,p0). Other program states are easy to prepa
For example, the state programming the evaluation of
average Wigner function along the line defined by the eq
tion q2p50, mod(2N), is the generalized Bell stateuC&P

5(quq&uq&/A2N, which can be efficiently prepared. A natu
ral question then arises: How hard is to program the eva
tion of the average Wigner function along an arbitrary lin
To answer this question it turns out to be useful to appl
method which is based on a rather interesting property
discrete Wigner functions. In fact, the discrete Wigner fun
tions transform ‘‘classically’’ when the quantum sta
evolves under a special class of unitary transformatio
These transformations are known as ‘‘quantum cat ma
and correspond to the quantization of linear transformati
on the torus. For example, consider the following line
transformation of the phase space grid:

q5bq81p8, p5~ab21!q81ap8, ~7!

wherea and b are integers. To this linear, area-preservin
transformation we can associate a unitary operator~such uni-
tary operator is known as a quantum cat map and is par
etrized by the integersa andb, see Ref.@11# for details!. The
unitary operator is such that the state evolves in such a
that the discrete Wigner function ‘‘flows’’ according to th
rule given in Eq.~7!, i.e.,

W~q8,p8,t11!5W~q,p,t !. ~8!

The linear transformation~7! maps lines into lines. There
fore, if we want to evaluate the average Wigner functi
along an arbitrary lineL we can use the following strategy
One can first transform the state with the appropriate uni
operator that maps the lineL into a line for which the pro-
gram state is easy to prepare~for example, a vertical line, o
a line defined by the equationq2p5c). Then, one can
evaluate the average of the Wigner function along the ‘‘ea
line using the method discussed above~with a program state
that is easy to prepare!. For the method to be practical w
still need to show that one can efficiently find the line
transformation~7! mapping an arbitrary lineL, defined by
the equationn1q1n2p5n3, into the lineq1p5n3 ~whose
program state is easy to prepare!. This can be done as fol
lows: If eithern1 or n2 are odd numbers the lineL has 2N
points and the parameters of the linear transformation~7!
mappingL to the line defined byq1p5n3 are b511n2 ,
n2a512n1 ~similar results can be obtained when bothn1
andn2 are even!. Finally, we should mention that the metho
can be made fully programmable by adding extra register
store the integersb andc parametrizing any cat map.

Evaluating sums of Wigner functions over phase-sp
lines is particularly interesting because of a crucial prope
of such functions. Thus, addingW(q,p) along the lineap
2bq5c one obtains the probability to detect the eigenst
of the translation operatorT(b,a)5UaVb exp(ipab/N) with
eigenvalue exp(ipc/N). As a consequence, in this case t
05231
.
e

a-

a-

a
f

-

s.
’’
s

r

,

-

ay

ry

’’

r

to

e
y

e

programmable gate array evaluates probabilities for the p
sible results of a set of measurements.

Lines are a special case since more general phase-s
domains cannot be associated with projection operat
However, it is clear that the method described above can
applied to efficiently prepare program states for other pha
space domains such as general~tilted! parallelograms. One
first trivially prepare the program state for a parallelogra
limited by vertical and horizontal segments and later tilt
applying the strategy based on the use of cat maps that
described above. Other simple phase-space regions can
be programmed using variations of this method. It is a
interesting to note that using variations of the circuit sho
in Fig. 3 we can also subtract values of the Wigner funct
in different phase-space regions~which could be useful if
one is interested in comparing their values!.

V. CONCLUSIONS

In this paper we established the existence of a gate a
that can be programmed to evaluate the expectation valu
any operator acting on anN-dimensional Hilbert space. Th
expectation value is obtained by measuring the polariza
of a single auxiliary qubit. As an example, we showed h
to program the evaluation of sums of values of the discr
Wigner function over various simple phase-space domain
is important to mention that our method is only efficient
determine if the sum of the Wigner function in a phase sp
domain @with up to o(N) points# is greater than a fixed
N-independent, threshold~since this does not require expo
nential precision!. This is a ‘‘quantum decision problem
whose input data~encoded in the system’s stater) is inher-
ently quantum. Due to the nature of the input data, this pr
lem cannot even be formulated on a classical computer.
terest in problems with quantum input data have recen
increased, partly due to their significance in connection w
the potential detection of entanglement@15–17# as well as
their relation with tomographic problems like the one d
scribed here. The problem of evaluating the expectat
value of a Hermitian operator with a quantum circuit of fixe
architecture was addressed in Ref.@16#. However, for the
method to be applied one requires knowledge of the sp
trum of the operator~or at least of its lowest eigenvalue! and
the ability to prepare a state which, up to a rescaling,
proportional to the operatorO. As mentioned above, the
method we propose would apply in a slightly different sit
ation where the information about the operator is restricted
the knowledge of the coefficients of its expansion in a giv
basis~of course, given such information one could compu
the spectrum with an exponentially large overhead!. The ex-
tension of some of the above results to continuous varia
is still under investigation@17#. After completing this work
we became aware of the related approach to the construc
of quantum universal detectors presented in Ref.@18#.
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