759 research outputs found

    Improved Answer-Set Programming Encodings for Abstract Argumentation

    Full text link
    The design of efficient solutions for abstract argumentation problems is a crucial step towards advanced argumentation systems. One of the most prominent approaches in the literature is to use Answer-Set Programming (ASP) for this endeavor. In this paper, we present new encodings for three prominent argumentation semantics using the concept of conditional literals in disjunctions as provided by the ASP-system clingo. Our new encodings are not only more succinct than previous versions, but also outperform them on standard benchmarks.Comment: To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201

    Cavity Quantum-Electrodynamical Chern Insulator: Route Towards Light-Induced Quantized Anomalous Hall Effect in Graphene

    Full text link
    We show that an energy gap is induced in graphene by light-matter coupling to a circularly polarized photon mode in a cavity. Using many-body perturbation theory we compute the electronic spectra which exhibit photon-dressed sidebands akin to Floquet sidebands for laser-driven materials. In contrast with Floquet topological insulators, in which a strictly quantized Hall response is induced by light only for off-resonant driving in the high-frequency limit, the photon-dressed Dirac fermions in the cavity show a quantized Hall response characterized by an integer Chern number. Specifically for graphene we predict that a Hall conductance of 2e2/h2 e^2/h can be induced in the low-temperature limit.Comment: 8 pages, 4 figures, incl. Supplementary Materia

    A hybrid spatiotemporal model of PCa dynamics and insights into optimal therapeutic strategies

    Get PDF
    Using a hybrid cellular automaton with stochastic elements, we investigate the effectiveness of multiple drug therapies on prostate cancer (PCa) growth. The ability of Androgen Deprivation Therapy to reduce PCa growth represents a milestone in prostate cancer treatment, nonetheless most patients eventually become refractory and develop castration-resistant prostate cancer. In recent years, a “second generation” drug called enzalutamide has been used to treat advanced PCa, or patients already exposed to chemotherapy that stopped responding to it. However, tumour resistance to enzalutamide is not well understood, and in this context, preclinical models and in silico experiments (numerical simulations) are key to understanding the mechanisms of resistance and to assessing therapeutic settings that may delay or prevent the onset of resistance. In our mathematical system, we incorporate cell phenotype switching to model the development of increased drug resistance, and consider the effect of the micro-environment dynamics on necrosis and apoptosis of the tumour cells. The therapeutic strategies that we explore include using a single drug (enzalutamide), and drug combinations (enzalutamide and everolimus or cabazitaxel) with different treatment schedules. Our results highlight the effectiveness of alternating therapies, especially alternating enzalutamide and cabazitaxel over a year, and a comparison is made with data taken from TRAMP mice to verify our findings

    Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources

    Get PDF
    In regenerative medicine and tissue engineering, the possibility to: (I) customize the shape and size of scaffolds, (II) develop highly mimicked tissues with a precise digital control, (III) manufacture complex structures and (IV) reduce the wastes related to the production process, are the main advantages of additive manufacturing technologies such as three-dimensional (3D) bioprinting. Specifically, this technique, which uses suitable hydrogel-based bioinks, enriched with cells and/or growth factors, has received significant consideration, especially in cartilage tissue engineering (CTE). In this field of interest, it may allow mimicking the complex native zonal hyaline cartilage organization by further enhancing its biological cues. However, there are still some limitations that need to be overcome before 3D bioprinting may be globally used for scaffolds' development and their clinical translation. One of them is represented by the poor availability of appropriate, biocompatible and eco-friendly biomaterials, which should present a series of specific requirements to be used and transformed into a proper bioink for CTE. In this scenario, considering that, nowadays, the environmental decline is of the highest concerns worldwide, exploring naturally-derived hydrogels has attracted outstanding attention throughout the scientific community. For this reason, a comprehensive review of the naturally-derived hydrogels, commonly employed as bioinks in CTE, was carried out. In particular, the current state of art regarding eco-friendly and natural bioinks' development for CTE was explored. Overall, this paper gives an overview of 3D bioprinting for CTE to guide future research towards the development of more reliable, customized, eco-friendly and innovative strategies for this field of interest

    Spectral Functions of the Uniform Electron Gas via Coupled-Cluster Theory and Comparison to the GWGW and Related Approximations

    Get PDF
    We use, for the first time, ab initio coupled-cluster theory to compute the spectral function of the uniform electron gas at a Wigner-Seitz radius of rs=4r_\mathrm{s}=4. The coupled-cluster approximations we employ go significantly beyond the diagrammatic content of state-of-the-art GWGW theory. We compare our calculations extensively to GWGW and GWGW-plus-cumulant theory, illustrating the strengths and weaknesses of these methods in capturing the quasiparticle and satellite features of the electron gas. Our accurate calculations further allow us to address the long-standing debate over the occupied bandwidth of metallic sodium. Our findings indicate that the future application of coupled-cluster theory to condensed phase material spectra is highly promising.Comment: 6 pages, 2 figure

    Synthesis and characterization of divinyl-fumarate Poly-ε-caprolactone for scaffolds with controlled architectures

    Get PDF
    A vinyl-terminated Polycaprolactone has been developed for tissue engineering applications using a one-step synthesis and functionalization method based on Ring Opening Polymerization (ROP) of Ô‘-caprolactone, with Hydroxyl Ethyl Vinyl Ether (HEVE) acting both as the initiator of ROP and as photo-curable functional group. The proposed method employs a catalyst based on Al, instead of the most popular Tin(II) 2-ethylhexanoate, to reduce the cytotoxicity. Following the synthesis of the vinyl-terminated polycaprolactone, its reaction with Fumaryl Chloride (FuCl) results in a divinyl-fumarate polycaprolactone (VPCLF). The obtained polymers were thoroughly characterized using Fourier Transform Infrared Spectroscopy (FTIR) and gel permeation chromatography (GPC) techniques. The polymer has been successfully employed, in combination with N-vinyl Pyrrolidone (NVP), to fabricate films and computer-designed porous scaffolds by micro-stereolithography (ÎĽ-SL) with Gyroid and Diamond architectures. Characterization of the networks indicated the influence of NVP content on the network properties. Human Mesenchymal Stem Cells (hMSCs) adhered and spread onto VPCLF/NVP networks showing good biological properties and no cytotoxic effect

    Shining Light on the Microscopic Resonant Mechanism Responsible for Cavity-Mediated Chemical Reactivity

    Get PDF
    Strong light-matter interaction in cavity environments has emerged as a promising and general approach to control chemical reactions in a non-intrusive manner. The underlying mechanism that distinguishes between steering, accelerating, or decelerating a chemical reaction has, however, remained thus far largely unclear, hampering progress in this frontier area of research. In this work, we leverage a combination of first-principles techniques, foremost quantum-electrodynamical density functional theory, applied to the recent experimental realization by Thomas et al. [1] to unveil the microscopic mechanism behind the experimentally observed reduced reaction-rate under resonant vibrational strong light-matter coupling. We find that the cavity mode functions as a mediator between different vibrational eigenmodes, transferring vibrational excitation and anharmonicity, correlating vibrations, and ultimately strengthening the chemical bond of interest. Importantly, the resonant feature observed in experiment, theoretically elusive so far, naturally arises in our investigations. Our theoretical predictions in polaritonic chemistry shine new light on cavity induced mechanisms, providing a crucial control strategy in state-of-the-art photocatalysis and energy conversion, pointing the way towards generalized quantum optical control of chemical systems

    Phage displayed peptides/antibodies recognizing growth factors and their tyrosine kinase receptors as tools for anti-cancer therapeutics.

    Get PDF
    The basic idea of displaying peptides on a phage, introduced by George P. Smith in 1985, was greatly developed and improved by McCafferty and colleagues at the MRC Laboratory of Molecular Biology and, later, by Barbas and colleagues at the Scripps Research Institute. Their approach was dedicated to building a system for the production of antibodies, similar to a naĂŻve B cell repertoire, in order to by-pass the standard hybridoma technology that requires animal immunization. Both groups merged the phage display technology with an antibody library to obtain a huge number of phage variants, each of them carrying a specific antibody ready to bind its target molecule, allowing, later on, rare phage (one in a million) to be isolated by affinity chromatography. Here, we will briefly review the basis of the technology and the therapeutic application of phage-derived bioactive molecules when addressed against key players in tumor development and progression: growth factors and their tyrosine kinase receptors

    Molecular Profiling of Lymphatic Endothelial Cell Activation In Vitro

    Get PDF
    The lymphatic vascular system plays a key role in cancer progression. Indeed, the activation of lymphatic endothelial cells (LECs) through the lymphangiogenic process allows for the formation of new lymphatic vessels (LVs) that represent the major route for the dissemination of solid tumors. This process is governed by a plethora of cancer-derived and microevironmental mediators that strictly activate and control specific molecular pathways in LECs. In this work we used an in vitro model of LEC activation to trigger lymphangiogenesis using a mix of recombinant pro-lymphangiogenic factors (VFS) and a co-culture system with human melanoma cells. Both systems efficiently activated LECs, and under these experimental conditions, RNA sequencing was exploited to unveil the transcriptional profile of activated LECs. Our data demonstrate that both recombinant and tumor cell-mediated activation trigger significant molecular pathways associated with endothelial activation, morphogenesis, and cytokine-mediated signaling. In addition, this system provides information on new genes to be further investigated in the lymphangiogenesis process and open the possibility for further exploitation in other tumor contexts where lymphatic dissemination plays a relevant role

    Cavity Control of Excitons in Two-Dimensional Materials

    Get PDF
    We propose a robust and efficient way of controlling the optical spectra of two-dimensional materials and van der Waals heterostructures by quantum cavity embedding. The cavity light-matter coupling leads to the formation of exciton-polaritons, a superposition of photons and excitons. Our first-principles study demonstrates a reordering and mixing of bright and dark excitons spectral features and in the case of a type II van-der-Waals heterostructure an inversion of intra- and interlayer excitonic resonances. We further show that the cavity light-matter coupling strongly depends on the dielectric environment and can be controlled by encapsulating the active two-dimensional (2D) crystal in another dielectric material. Our theoretical calculations are based on a newly developed nonperturbative many-body framework to solve the coupled electron-photon Schrödinger equation in a quantum-electrodynamical extension of the Bethe-Salpeter approach. This approach enables the ab initio simulations of exciton-polariton states and their dispersion from weak to strong cavity light-matter coupling regimes. Our method is then extended to treat van der Waals heterostructures and encapsulated 2D materials using a simplified Mott-Wannier description of the excitons that can be applied to very large systems beyond reach for fully ab initio approaches
    • …
    corecore