14 research outputs found

    Serendipitous discovery of a dying Giant Radio Galaxy associated with NGC 1534, using the murchison widefield array

    Get PDF
    Recent observations with the Murchison Widefield Array at 185 MHz have serendipitously unveiled a heretofore unknown giant and relatively nearby (z=0.0178) radio galaxy associated with NGC 1534. The diffuse emission presented here is the first indication that NGC 1534 is one of a rare class of objects (along with NGC 5128 and NGC 612) in which a galaxy with a prominent dust lane hosts radio emission on scales of ~700 kpc. We present details of the radio emission along with a detailed comparison with other radio galaxies with discs. NGC 1534 is the lowest surface brightness radio galaxy known with an estimated scaled 1.4-GHz surface brightness of just 0.2 mJy arcmin-2. The radio lobes have one of the steepest spectral indices yet observed: α = -2.1 ± 0.1, and the core to lobe luminosity ratio is <0.1 per cent. We estimate the space density of this low brightness (dying) phase of radio galaxy evolution as 7 × 10-7 Mpc-3 and argue that normal AGN cannot spend more than 6 per cent of their lifetime in this phase if they all go through the same cycle

    The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

    Get PDF
    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised

    Trapping of Mobile Pt Species by PdO Nanoparticles under Oxidizing Conditions

    No full text
    Pt is an active catalyst for diesel exhaust catalysis but is known to sinter and form large particles under oxidizing conditions. Pd is added to improve the performance of the Pt catalysts. To investigate the role of Pd, we introduced metallic Pt nanoparticles via physical vapor deposition to a sample containing PdO nanoparticles. When the catalyst was aged in air, the Pt particles disappeared, and the Pt was captured by the PdO, forming bimetallic Pt–Pd nanoparticles. The formation of metallic Pt–Pd alloys under oxidizing conditions is indeed remarkable but is consistent with bulk thermodynamics. The results show that mobile Pt species are effectively trapped by PdO, representing a novel mechanism by which Ostwald ripening is slowed down. The results have implications for the development of sinter-resistant catalysts and help explain the improved performance and durability of Pt–Pd in automotive exhaust catalytic converters

    Human actions alter tidal marsh seascapes and the provision of ecosystem services

    Get PDF
    Tidal marshes are a key component of coastal seascape mosaics that support a suite of socially and economically valuable ecosystem services, including recreational opportunities (e.g., fishing, birdwatching), habitat for fisheries species, improved water quality, and shoreline protection. The capacity for tidal marshes to support these services is, however, threatened by increasingly widespread human impacts that reduce the extent and condition of tidal marshes across multiple spatial scales and that vary substantially through time. Climate change causes species redistribution at continental scales, changes in weather patterns (e.g., rainfall), and a worsening of the effect of coastal squeeze through sea level rise. Simultaneously, the effects of urbanization such as habitat loss, eutrophication, fishing, and the spread of invasive species interact with each other, and with climate change, to fundamentally change the structure and functioning of tidal marshes and their food webs. These changes affect tidal marshes at local scales through changes in plant community composition, complexity, and condition and at regional scales through changes in habitat extent, configuration, and connectivity. However, research into the full effects of these multi-scaled, interactive stressors on ecosystem service provision in tidal marshes is in its infancy and is somewhat geographically restricted. This hinders our capacity to quickly and effectively curb loss and degradation of both tidal marshes and the services they deliver with targeted management actions. We highlight ten priority research questions seeking to quantify the consequences and scales of human impacts on tidal marshes that should be answered to improve management and restoration plans

    A new layout optimization technique for interferometric arrays, applied to the Murchison Widefield Array

    No full text
    Antenna layout is an important design consideration for radio interferometers because it determines the quality of the snapshot point spread function (PSF, or array beam). This is particularly true for experiments targeting the 21-cm Epoch of Reionization signal as the quality of the foreground subtraction depends directly on the spatial dynamic range and thus the smoothness of the baseline distribution. Nearly all sites have constraints on where antennas can be placed - even at the remote Australian location of the Murchison Widefield Array (MWA) there are rock outcrops, flood zones, heritages areas, emergency runways and trees. These exclusion areas can introduce spatial structure into the baseline distribution that enhances the PSF sidelobes and reduces the angular dynamic range. In this paper we present a new method of constrained antenna placement that reduces the spatial structure in the baseline distribution. This method not only outperforms random placement algorithms that avoid exclusion zones, but surprisingly outperforms random placement algorithms without constraints to provide what we believe are the smoothest constrained baseline distributions developed to date. We use our new algorithm to determine antenna placements for the originally planned MWA, and present the antenna locations, baseline distribution and snapshot PSF for this array choice.U.S. National Science Foundation (grants AST CAREER-0847753, AST-0457585, AST-0908884 and PHY-0835713)Australian Research Council (grants LE0775621 and LE0882938)U.S. Air Force Office of Scientific Research (grant FA9550-0510247

    A digital-receiver for the Murchison Widefield Array

    Get PDF
    An FPGA-based digital-receiver has been developed for a low-frequency imaging radio interferometer, the Murchison Widefield Array (MWA). The MWA, located at the Murchison Radio-astronomy Observatory (MRO) in Western Australia, consists of 128 dual-polarized aperture-array elements (tiles) operating between 80 and 300 MHz, with a total processed bandwidth of 30.72 MHz for each polarization. Radio-frequency signals from the tiles are amplified and band limited using analog signal conditioning units; sampled and channelized by digital-receivers. The signals from eight tiles are processed by a single digital-receiver, thus requiring 16 digital-receivers for the MWA. The main function of the digital-receivers is to digitize the broad-band signals from each tile, channelize them to form the sky-band, and transport it through optical fibers to a centrally located correlator for further processing. The digital-receiver firmware also implements functions to measure the signal power, perform power equalization across the band, detect interference-like events, and invoke diagnostic modes. The digital-receiver is controlled by high-level programs running on a single-board-computer. This paper presents the digital-receiver design, implementation, current status, and plans for future enhancements
    corecore