1,420 research outputs found

    The Invisible Revolution in Plea Bargaining: Managerial Judging and Judicial Participation in Negotiations

    Get PDF
    This article, the most comprehensive study of judicial participation in plea negotiations since the 1970s, reveals a stunning array of new procedures that involve judges routinely in the settlement of criminal cases. Interviewing nearly 100 judges and attorneys in ten states, we found that what once were informal, disfavored interactions have quietly, without notice, transformed into highly structured, best practices for docket management. We learned of grant-funded, problem-solving sessions complete with risk assessments and real-time information on treatment options; multi-case conferences where other lawyers chime in; settlement courts located at the jail; settlement dockets with retired judges; full-blown felony mediation with defendant and victims; felony court judges serving as lower court judges, and more. We detail the reasons these innovations in managerial judging have developed so recently on the criminal side, why they thrive, and why some judges have not joined in. Contrary to common assumptions, the potential benefits of regulated involvement of the judge include more informed sentencing by judges, as well as less coercion and uncertainty for defendants facing early plea offers. Our qualitative evidence also raises intriguing hypotheses for future research

    Centipede venoms as a source of drug leads

    Get PDF
    peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=iedc20© 2016 Taylor and Francis. The attached document is the authors' final submitted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it

    Confusions in the Anticommons

    Get PDF
    Tragedy of the anticommons is the logical reciprocal to the better-known tragedy of the commons. It is generally characterized as a legal regime in which multiple owners hold rights of exclusion over a resource in demand. The resource cannot be put into use without a bundling of approvals from the various separate owners, yet bundling entails serious bargaining complications resulting in systematic Pareto underutilization. Nevertheless, we argue, the anticommons concept often has been employed without consistency and appropriate precision. Illustrations come primarily from the writings of Michael Heller, whose oft-cited work has been central to the anticommons literature. This paper presents a simple version of the formal anticommons model and demonstrates that relevant applications can be constructed with uniformity and analytic rigor.</jats:p

    Anticommons, the Coase theorem and the problem of bundling inefficiency

    Get PDF
    The Coase theorem is most often formulated in terms of bi-lateral monopoly, for instance between a polluting factory and an affected neighbour.  Instead, we introduce multiple affected neighbours and the concept of anticommons, in which autonomous actors with separate yet necessarily complementary inputs each has the right to deny but not to permit use.  Once we posit multiple owners possessing complementary rights, strategically maximizing against each other as well as against the actor who wishes to purchase a portion of that right, the outcome is neither efficient nor invariant.  Our finding, based on non-cooperative game theory, is sustained even under the restrictive Coase assumptions regarding complete information, perfect rationality, and zero transaction costs. The implication is that suboptimal bundling agreements in cases of multiple stakeholders is not the mere product of market imperfection, but instead is a systematic result

    Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor

    Get PDF
    A facultative chemoautotrophic bacterium, strain MLHE-1T, was isolated from Mono Lake, an alkaline hypersaline soda lake in California, USA. Cells of strain MLHE-1T were Gram-negative, short motile rods that grew with inorganic electron donors (arsenite, hydrogen, sulfide or thiosulfate) coupled with the reduction of nitrate to nitrite. No aerobic growth was attained with arsenite or sulfide, but hydrogen sustained both aerobic and anaerobic growth. No growth occurred when nitrite or nitrous oxide was substituted for nitrate. Heterotrophic growth was observed under aerobic and anaerobic (nitrate) conditions. Cells of strain MLHE-1T could oxidize but not grow on CO, while CH4 neither supported growth nor was it oxidized. When grown chemoautotrophically, strain MLHE-1T assimilated inorganic carbon via the Calvin-Benson-Bassham reductive pentose phosphate pathway, with the activity of ribulose 1,5-bisphosphate carboxylase (RuBisCO) functioning optimally at 0.1 M NaCl and at pH 7.3. Strain MLHE-1T grew over broad ranges of pH (7.3-10.0; optimum, 9.3), salinity (115-190 g l-1; optimum 30 g l-1) and temperature (113-40 °C; optimum, 30 °C). Phylogenetic analysis of 16S rRNA gene sequences placed strain MLHE-1T in the class Gammaproteobacteria (family Ectothiorhodospiraceae) and most closely related to Alkalispirillum mobile (98.5%) and Alkalilimnicola halodurans (98.6%), although none of these three haloalkaliphilic micro-organisms were capable of photoautotrophic growth and only strain MLHE-1T was able to oxidize As(III). On the basis of physiological characteristics and DNA-DNA hybridization data, it is suggested that strain MLHE-1T represents a novel species within the genus Alkalilimnicola for which the name Alkalilimnicola ehrlichii is proposed. The type strain is MLHE-1T (=DSM 17681T =ATCC BAA-1101T). Aspects of the annotated full genome of Alkalilimnicola ehrlichii are discussed in the light of its physiology. © 2007 IUMS

    The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: A high precission static compression study

    Full text link
    The high-pressure behavior of the lattice elasticity of spodumene, LiAlSi2O6, was studied by static compression in a diamond-anvil cell up to 9.3 GPa. Investigations by means of single-crystal XRD and Raman spectroscopy within the hydrostatic limits of the pressure medium focus on the pressure ranges around similar to 3.2 and similar to 7.7 GPa, which have been reported previously to comprise two independent structural phase transitions. While our measurements confirm the well-established first-order C2/c-P2(1)/c transformation at 3.19 GPa (with 1.2% volume discontinuity and a hysteresis between 0.02 and 0.06 GPa), both unit-cell dimensions and the spectral changes observed in high-pressure Raman spectra give no evidence for structural changes related to a second phase transition. Monoclinic lattice parameters and unit-cell volumes at in total 59 different pressure points have been used to re-calculate the lattice-related properties of spontaneous strain, volume strain, and the bulk moduli as a function of pressure across the transition. A modified Landau free energy expansion in terms of a one component order parameter has been developed and tested against these experimentally determined data. The Landau solution provides a much better reproduction of the observed anomalies than any equation-of-state fit to data sets truncated below and above P (tr), thus giving Landau parameters of K (0) = 138.3(2) GPa, K' = 7.46(5), lambda (V) = 33.6(2) GPa, a = 0.486(3), b = -29.4(6) GPa and c = 551(11) GPa

    On a Theoretical Interpretation of the Period Gap in Binary Millisecond Pulsars

    Get PDF
    We reexamine evolutionary channels for the formation of binary millisecond pulsars in order to understand their observed orbital period distribution. The available paths provide a natural division into systems characterized by long orbital periods (> 60 d) and short orbital periods (< 30 d). Systems with initial periods 1 - 2 d ultimately produce low mass He white dwarfs with short orbital periods ( few days), early massive Case B evolution produces CO white dwarfs with orbital periods < 20 d. Common envelope evolution result in short period systems (P < 1 d) from unstable low mass Case B evolution producing He white dwarfs, and from unstable Case C evolution leading to CO white dwarfs. On the other hand, the long orbital period group arises from stable low mass Case B evolution with initial periods > few days producing low mass He white dwarfs and periods > 30 d, and from stable Case C evolution producing CO white dwarfs. The lack of observed systems between 23 and 56 days probably reflects the fact that for comparable initial orbital periods (< few days) low mass Case B and early massive Case B evolution lead to very discrepant final periods. We show in particular that the lower limit (~ 23 d) cannot result from common-envelope evolution.Comment: 20 pages, one encapsulated figure, LaTeX, accepted by Ap

    An Improved Dynamical Model for the Microquasar XTE J1550-564

    Full text link
    We present an improved dynamical model of the X-ray binary and microquasar XTE J1550-564 based on new moderate-resolution optical spectroscopy and near-infrared photometry. By combining our new radial velocity measurements with previous measurements obtained 2001 May at the 8.2m VLT and with light curves, we find an orbital period of P=1.5420333 +/- 0.0000024 days and a radial velocity semiamplitude of K_2=363.14 +/- 5.97$ km/sec, which together imply an optical mass function of f(M)=7.65 +/- 0.38 solar masses. We find that the projected rotational velocity of the secondary star is 55 +/- 5 km/sec, which implies a very extreme mass ratio of Q=M/M_2=30. Using a model of a Roche lobe-filling star and an azimuthally symmetric accretion disk, we fit simultaneously optical light curves from 2001, near-infrared light curves from 2008 and all of the radial velocity measurements to derive system parameters. We find an inclination of 74.7 +/- 3.8 deg and component masses of M_2=0.30 +/- 0.07 solar masses and M=9.10 +/- 0.61 solar masses for the secondary star and black hole, respectively. The radius of the secondary star for the adopted model is 1.75 +/- 0.12 solar radii. Using this radius, the average K_S magnitude, and an extinction of A_K=0.507 +/- 0.050 mag, we find a distance of 4.38^{+0.58}_{-0.41} kpc, which is in good agreement with a recent distance estimate based on HI absorption lines (abstract shortened).Comment: 29 pages, 11 figures, to appear in ApJ, figures 1 and 2 are compresse

    Book reviews

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43582/1/11159_2005_Article_BF01450280.pd

    Measuring Five Dimensions of Religiosity Across Adolescence

    Get PDF
    This paper theorizes and tests a latent variable model of adolescent religiosity in which five dimensions of religiosity are interrelated: religious beliefs, religious exclusivity, external religiosity, private practice, and religious salience. Research often theorizes overlapping and independent influences of single items or dimensions of religiosity on outcomes such as adolescent sexual behavior, but rarely operationalizes the dimensions in a measurement model accounting for their associations with each other and across time. We use longitudinal structural equation modeling (SEM) with latent variables to analyze data from two waves of the National Study of Youth and Religion. We test our hypothesized measurement model as compared to four alternate measurement models and find that our proposed model maintains superior fit. We then discuss the associations between the five dimensions of religiosity we measure and how these change over time. Our findings suggest how future research might better operationalize multiple dimensions of religiosity in studies of the influence of religion in adolescence
    • …
    corecore