31 research outputs found

    The Cutaneous Physiological Redox: Essential to Maintain but Difficult to Define

    No full text
    Skin is a unique tissue, possessing extremely efficient protective and regulative mechanisms, similar only to the gut and lungs. These tissues serve as an interface with the environment and are exposed to stressors from both endogenous and exogenous sources. Interestingly, all these stressors lead downstream to a cellular production of reactive oxygen species (ROS) and other electrophiles, which, in turn could have deleterious outcomes for the living organism. Hence, such tissues should always maintain a “high-alert” condition in order to cope with these various insults. Nevertheless, a moderate production of ROS induced by stressors could actually be beneficial, although it is impossible to predict if and which exposure would lead to which outcome. Consequently, a parameter which would indicate the skin’s readiness to cope with continuously fluctuating conditions is required. It has been proposed that the redox status may serve as a suitable indicator. In this opinion manuscript, we argue that the redox status is a vague parameter that is difficult to characterized and quantify due to its extremely dynamic nature. The common convention that the redox status is composed solely of the balance between oxidants and reductants (ROS and antioxidants) is also thought-provoking. Since this parameter in vivo behaves in a dynamic and complex manner, it better fits the description of a process, rather than an individual parameter. We suggest that the homeostatic modulation of the physiological redox (PR) should be in focus, rather than the redox status parameter itself. It is further suggested that low molecular weight antioxidants (LMWA) are, in fact, rather insignificant concerning the PR maintenance, and that the major contributors to this delicate modulation are regulative, protein-based systems such as the protective phase II antioxidant enzymes. Moreover, we show that skin microbiome and cutaneous advanced lipid peroxidation end-products (ALEs) take part in sustaining the cutaneous PR homoeostasis via activation of the Nrf2–Keap1 protective pathway

    Ron et al. 2017 JE data

    No full text
    plot level, habitat level and regional level species diversity for plots of four different soil depth

    Data from: The role of species pools in determining species diversity in spatially heterogeneous communities

    No full text
    1. The 'habitat-specific species pool hypothesis' proposes that differences between habitats in the sizes of their species pools are the main drivers of diversity responses to habitat heterogeneity. Empirical tests of this hypothesis are not trivial since species might be missing from ecologically suitable habitats due to limited dispersal, while others may occur in unsuitable habitats by means of source-sink dynamics and mass effect. 2. We tested the habitat-specific species pool hypothesis in a local, environmentally heterogeneous community of annual plants using a novel 'ecological selection' experiment. Mixtures of seeds representing the whole community were sown in each habitat, and the emerging species were exposed to six generations of selection by environmental filtering and competition while being blocked from dispersal. A comparison of the total number of species that were able to survive in each habitat (i.e., to pass the selection test) with data on species richness in the natural community allowed us to test the degree to which observed differences in species richness between habitats could be explained by differences in the sizes of the respective species pools. 3. Results supported the species pool hypothesis, showing that differences in the sizes of the habitat-specific species pools were important in determining diversity responses to habitat heterogeneity. Moreover, species richness showed a unimodal response to local-scale gradients in habitat productivity, and this response could be attributed to underlying differences in species-pool sizes. Both results were robust to properties of the data and the method of analysis. 4. Synthesis. Our results provide a strong experimental evidence that differences in the sizes of habitat-specific species pools might be important in shaping the diversity of local communities. Future theoretical and empirical studies in community ecology should explore the potential sources and implications of such differences

    Clustering of clinical and echocardiographic phenotypes of covid-19 patients

    No full text
    Abstract We sought to divide COVID-19 patients into distinct phenotypical subgroups using echocardiography and clinical markers to elucidate the pathogenesis of the disease and its heterogeneous cardiac involvement. A total of 506 consecutive patients hospitalized with COVID-19 infection underwent complete evaluation, including echocardiography, at admission. A k-prototypes algorithm applied to patients' clinical and imaging data at admission partitioned the patients into four phenotypical clusters: Clusters 0 and 1 were younger and healthier, 2 and 3 were older with worse cardiac indexes, and clusters 1 and 3 had a stronger inflammatory response. The clusters manifested very distinct survival patterns (C-index for the Cox proportional hazard model 0.77), with survival best for cluster 0, intermediate for 1–2 and worst for 3. Interestingly, cluster 1 showed a harsher disease course than cluster 2 but with similar survival. Clusters obtained with echocardiography were more predictive of mortality than clusters obtained without echocardiography. Additionally, several echocardiography variables (E′ lat, E′ sept, E/e average) showed high discriminative power among the clusters. The results suggested that older infected males have a higher chance to deteriorate than older infected females. In conclusion, COVID-19 manifests differently for distinctive clusters of patients. These clusters reflect different disease manifestations and prognoses. Although including echocardiography improved the predictive power, its marginal contribution over clustering using clinical parameters only does not justify the burden of echocardiography data collection

    Tumor Cell-Associated IL-1α Affects Breast Cancer Progression and Metastasis in Mice through Manipulation of the Tumor Immune Microenvironment

    No full text
    IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells

    Mechanisms of bacterial (Serratia marcescens) attachment to, migration along, and killing of fungal hyphae

    Get PDF
    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well. S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol.Fil: Hover, Tal. Tel Aviv University; IsraelFil: Maya, Tal. Tel Aviv University; IsraelFil: Ron, Sapir. Tel Aviv University; IsraelFil: Sandovsky, Hani. Tel Aviv University; IsraelFil: Shadkchan, Yana. Tel Aviv University; IsraelFil: Kijner, Nitzan. Tel Aviv University; IsraelFil: Mitiagin, Yulia. Tel Aviv University; IsraelFil: Fichtman, Boris. Bar Ilan University; IsraelFil: Harel, Amnon. Bar Ilan University; IsraelFil: Shanks, Robert M. Q.. University of Pittsburgh Medical Center; Estados UnidosFil: Bruna, Roberto Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Garcia Vescovi, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Osherov, Nir. Tel Aviv University; Israe
    corecore