97 research outputs found

    A Domain Agnostic Normalization Layer for Unsupervised Adversarial Domain Adaptation

    Full text link
    We propose a normalization layer for unsupervised domain adaption in semantic scene segmentation. Normalization layers are known to improve convergence and generalization and are part of many state-of-the-art fully-convolutional neural networks. We show that conventional normalization layers worsen the performance of current Unsupervised Adversarial Domain Adaption (UADA), which is a method to improve network performance on unlabeled datasets and the focus of our research. Therefore, we propose a novel Domain Agnostic Normalization layer and thereby unlock the benefits of normalization layers for unsupervised adversarial domain adaptation. In our evaluation, we adapt from the synthetic GTA5 data set to the real Cityscapes data set, a common benchmark experiment, and surpass the state-of-the-art. As our normalization layer is domain agnostic at test time, we furthermore demonstrate that UADA using Domain Agnostic Normalization improves performance on unseen domains, specifically on Apolloscape and Mapillary

    Applying Deep Bidirectional LSTM and Mixture Density Network for Basketball Trajectory Prediction

    Full text link
    Data analytics helps basketball teams to create tactics. However, manual data collection and analytics are costly and ineffective. Therefore, we applied a deep bidirectional long short-term memory (BLSTM) and mixture density network (MDN) approach. This model is not only capable of predicting a basketball trajectory based on real data, but it also can generate new trajectory samples. It is an excellent application to help coaches and players decide when and where to shoot. Its structure is particularly suitable for dealing with time series problems. BLSTM receives forward and backward information at the same time, while stacking multiple BLSTMs further increases the learning ability of the model. Combined with BLSTMs, MDN is used to generate a multi-modal distribution of outputs. Thus, the proposed model can, in principle, represent arbitrary conditional probability distributions of output variables. We tested our model with two experiments on three-pointer datasets from NBA SportVu data. In the hit-or-miss classification experiment, the proposed model outperformed other models in terms of the convergence speed and accuracy. In the trajectory generation experiment, eight model-generated trajectories at a given time closely matched real trajectories

    Inertial Measurement Unit-Based Gait Event Detection in Healthy and Neurological Cohorts: A Walk in the Dark

    Get PDF
    A deep learning (DL)-based network is developed to determine gait events from IMU data from a shank- or foot-worn device. The DL network takes as input the raw IMU data and predicts for each time step the probability that it corresponds to an initial or final contact. The algorithm is validated for walking at different self-selected speeds across multiple neurological diseases and both in clinical research settings and the habitual environment. The algorithms shows a high detection rate for initial and final contacts, and a small time error when compared to reference events obtained with an optical motion capture system or pressure insoles. Based on the excellent performance, it is concluded that the DL algorithm is well suited for continuous long-term monitoring of gait in the habitual environment

    No time to waste: practical statistical contact tracing with few low-bit messages

    Get PDF
    Pandemics have a major impact on society and the economy. In the case of a new virus, such as COVID-19, high-grade tests and vaccines might be slow to develop and scarce in the crucial initial phase. With no time to waste and lock-downs being expensive, contact tracing is thus an essential tool for policymakers. In theory, statistical inference on a virus transmission model can provide an effective method for tracing infections. However, in practice, such algorithms need to run decentralized, rendering existing methods – that require hundreds or even thousands of daily messages per person – infeasible. In this paper, we develop an algorithm that (i) requires only a few (2-5) daily messages, (ii) works with extremely low bandwidths (3-5 bits) and (iii) enables quarantining and targeted testing that drastically reduces the peak and length of the pandemic. We compare the effectiveness of our algorithm using two agent-based simulators of realistic contact patterns and pandemic parameters and show that it performs well even with low bandwidth, imprecise tests, and incomplete population coverage

    A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts

    Get PDF
    Many algorithms use 3D accelerometer and/or gyroscope data from inertial measurement unit (IMU) sensors to detect gait events (i.e., initial and final foot contact). However, these algorithms often require knowledge about sensor orientation and use empirically derived thresholds. As align ment cannot always be controlled for in ambulatory assessments, methods are needed that require little knowledge on sensor location and orientation, e.g., a convolutional neural network-based deep learning model. Therefore, 157 participants from healthy and neurologically diseased cohorts walked 5 m distances at slow, preferred, and fast walking speed, while data were collected from IMUs on the left and right ankle and shank. Gait events were detected and stride parameters were extracted using a deep learning model and an optoelectronic motion capture (OMC) system for reference. The deep learning model consisted of convolutional layers using dilated convolutions, followed by two independent fully connected layers to predict whether a time step corresponded to the event of initial contact (IC) or final contact (FC), respectively. Results showed a high detection rate for both initial and final contacts across sensor locations (recall ≥ 92%, precision ≥ 97%). Time agreement was excellent as witnessed from the median time error (0.005 s) and corresponding inter-quartile range (0.020 s). The extracted stride-specific parameters were in good agreement with parameters derived from the OMC system (maximum mean difference 0.003 s and corresponding maximum limits of agreement (−0.049 s, 0.051 s) for a 95% confidence level). Thus, the deep learning approach was considered a valid approach for detecting gait events and extracting stride-specific parameters with little knowledge on exact IMU location and orientation in conditions with and without walking pathologies due to neurological diseases

    Protect Your Score: Contact Tracing With Differential Privacy Guarantees

    Full text link
    The pandemic in 2020 and 2021 had enormous economic and societal consequences, and studies show that contact tracing algorithms can be key in the early containment of the virus. While large strides have been made towards more effective contact tracing algorithms, we argue that privacy concerns currently hold deployment back. The essence of a contact tracing algorithm constitutes the communication of a risk score. Yet, it is precisely the communication and release of this score to a user that an adversary can leverage to gauge the private health status of an individual. We pinpoint a realistic attack scenario and propose a contact tracing algorithm with differential privacy guarantees against this attack. The algorithm is tested on the two most widely used agent-based COVID19 simulators and demonstrates superior performance in a wide range of settings. Especially for realistic test scenarios and while releasing each risk score with epsilon=1 differential privacy, we achieve a two to ten-fold reduction in the infection rate of the virus. To the best of our knowledge, this presents the first contact tracing algorithm with differential privacy guarantees when revealing risk scores for COVID19.Comment: Accepted to The 38th Annual AAAI Conference on Artificial Intelligence (AAAI 2024

    Changes in Coordination and Its Variability with an Increase in Functional Performance of the Lower Extremities

    Get PDF
    Clinical gait analysis has a long-standing tradition in biomechanics. However, the use of kinematic data or segment coordination has not been reported based on wearable sensors in “real-life” environments. In this work, the skeletal kinematics of 21 healthy and 24 neurogeriatric participants was collected in a magnetically disturbed environment with inertial measurement units (IMUs) using an accelerometer-based functional calibration method. The system consists of seven IMUs attached to the lower back, the thighs, the shanks, and the feet to acquire and process the raw sensor data. The Short Physical Performance Battery (SPPB) test was performed to relate joint kinematics and segment coordination to the overall SPPB score. Participants were then divided into three subgroups based on low (0–6), moderate (7–9), or high (10–12) SPPB scores. The main finding of this study is that most IMU-based parameters significantly correlated with the SPPB score and the parameters significantly differed between the SPPB subgroups. Lower limb range of motion and joint segment coordination correlated positively with the SPPB score, and the segment coordination variability correlated negatively. The results suggest that segment coordination impairments become more pronounced with a decreasing SPPB score, indicating that participants with low overall SPPB scores produce a peculiar inconsistent walking pattern to counteract lower extremity impairment in strength, balance, and mobility. Our findings confirm the usefulness of SPPB through objectively measured parameters, which may be relevant for the design of future studies and clinical routines

    Quantification of Arm Swing during Walking in Healthy Adults and Parkinson's Disease Patients: Wearable Sensor-Based Algorithm Development and Validation

    Get PDF
    Neurological pathologies can alter the swinging movement of the arms during walking. The quantification of arm swings has therefore a high clinical relevance. This study developed and validated a wearable sensor-based arm swing algorithm for healthy adults and patients with Parkinson's disease (PwP). Arm swings of 15 healthy adults and 13 PwP were evaluated (i) with wearable sensors on each wrist while walking on a treadmill, and (ii) with reflective markers for optical motion capture fixed on top of the respective sensor for validation purposes. The gyroscope data from the wearable sensors were used to calculate several arm swing parameters, including amplitude and peak angular velocity. Arm swing amplitude and peak angular velocity were extracted with systematic errors ranging from 0.1 to 0.5° and from -0.3 to 0.3°/s, respectively. These extracted parameters were significantly different between healthy adults and PwP as expected based on the literature. An accurate algorithm was developed that can be used in both clinical and daily-living situations. This algorithm provides the basis for the use of wearable sensor-extracted arm swing parameters in healthy adults and patients with movement disorders such as Parkinson's disease
    corecore