49 research outputs found

    Spiral sound-diffusing metasurfaces based on holographic vortices

    Full text link
    [EN] In this work, we show that scattered acoustic vortices generated by metasurfaces with chiral symmetry present broadband unusual properties in the far-field. These metasurfaces are designed to encode the holographic field of an acoustical vortex, resulting in structures with spiral geometry. In the near field, phase dislocations with tuned topological charge emerge when the scattered waves interference destructively along the axis of the spiral metasurface. In the far field, metasurfaces based on holographic vortices inhibit specular reflections because all scattered waves also interfere destructively in the normal direction. In addition, the scattering function in the far field is unusually uniform because the reflected waves diverge spherically from the holographic focal point. In this way, by triggering vorticity, energy can be evenly reflected in all directions except to the normal. As a consequence, the designed metasurface presents a mean correlation-scattering coefficient of 0.99 (0.98 in experiments) and a mean normalized diffusion coefficient of 0.73 (0.76 in experiments) over a 4 octave frequency band. The singular features of the resulting metasurfaces with chiral geometry allow the simultaneous generation of broadband, diffuse and non-specular scattering. These three exceptional features make spiral metasurfaces extraordinary candidates for controlling acoustic scattering and generating diffuse sound reflections in several applications and branches of wave physics as underwater acoustics, biomedical ultrasound, particle manipulation devices or room acoustics.We acknowledge financial support from the Spanish Ministry of Science, Innovation and Universities through Grant "Juan de la Cierva-Incorporacion" (IJC2018-037897-I) and PID2019-111436RB-C22, and by the Agencia Valenciana de la Innovacio through grants INNVAL10/19/016. This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology). JPG and VRG gratefully acknowledge the ANR-RGC METARoom (ANR-18-CE08-0021) project and the project HYPERMETA funded under the program Etoiles Montantes of the Region Pays de la Loire.Jimenez, N.; Groby, J.; Romero-García, V. (2021). Spiral sound-diffusing metasurfaces based on holographic vortices. Scientific Reports. 11(1):10217-01-10217-13. https://doi.org/10.1038/s41598-021-89487-8S10217-0110217-13111Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).Ma, G. & Sheng, P. Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv. 2, e1501595 (2016).Assouar, B. et al. Acoustic metasurfaces. Nat. Rev. Mater. 3, 460–472 (2018).Zhu, Y. et al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nat. Commun. 9, 1–9 (2018).Xie, Y. et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 5, 1–5 (2014).Li, J., Shen, C., Díaz-Rubio, A., Tretyakov, S. A. & Cummer, S. A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun. 9, 1–9 (2018).Li, Y., Liang, B., Gu, Z.-M., Zou, X.-Y. & Cheng, J.-C. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. 3, 2546 (2013).Lemoult, F., Fink, M. & Lerosey, G. Acoustic resonators for far-field control of sound on a subwavelength scale. Phys. Rev. Lett. 107, 064301 (2011).Li, Y. et al. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys. Rev. Appl. 2, 064002 (2014).Zhu, X. et al. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials. Nat. Commun. 7, 1–7 (2016).Zhang, S., Xia, C. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011).Romero-García, V. et al. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016).Jiménez, N., Huang, W., Romero-García, V., Pagneux, V. & Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett. 109, 121902 (2016).Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Sci. Rep. 7, 13595 (2017).Yang, M., Chen, S., Fu, C. & Sheng, P. Optimal sound-absorbing structures. Mater. Horizons 4, 673–680 (2017).Schröder, M. R. Diffuse sound reflection by maximum-length sequences. J. Acoust. Soc. Am. 57, 149–150 (1975).Cox, T. J. & D’antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application (CRC Press, 2009).D’antonio, P. Planar binary amplitude diffusor (1998). US Patent 5,817,992.Cox, T. J., Angus, J. A. & D’Antonio, P. Ternary and quadriphase sequence diffusers. J. Acoust. Soc. Am. 119, 310–319 (2006).Zhu, Y., Fan, X., Liang, B., Cheng, J. & Jing, Y. Ultrathin acoustic metasurface-based schroeder diffuser. Phys. Rev. X 7, 021034 (2017).Jiménez, N., Cox, T. J., Romero-García, V. & Groby, J.-P. Metadiffusers: Deep-subwavelength sound diffusers. Sci. Rep. 7, 5389 (2017).Ballestero, E. et al. Experimental validation of deep-subwavelength diffusion by acoustic metadiffusers. Appl. Phys. Lett. 115, 081901 (2019).Nye, J. & Berry, M. Dislocations in wave trains. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 336, 165–190 (The Royal Society, 1974).Volke-Sepúlveda, K., Santillán, A. O. & Boullosa, R. R. Transfer of angular momentum to matter from acoustical vortices in free space. Phys. Rev. Lett. 100, 024302 (2008).Skeldon, K., Wilson, C., Edgar, M. & Padgett, M. An acoustic spanner and its associated rotational doppler shift. New J. Phys. 10, 013018 (2008).Anhäuser, A., Wunenburger, R. & Brasselet, E. Acoustic rotational manipulation using orbital angular momentum transfer. Phys. Rev. Lett. 109, 034301 (2012).Demore, C. E. et al. Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams. Phys. Rev. Lett. 108, 194301 (2012).Hong, Z., Zhang, J. & Drinkwater, B. W. Observation of orbital angular momentum transfer from bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett. 114, 214301 (2015).Wu, J. Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991).Zhang, L. & Marston, P. L. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Phys. Rev. E 84, 065601 (2011).Courtney, C. R. et al. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Appl. Phys. Lett. 104, 154103 (2014).Baresch, D., Thomas, J.-L. & Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers. Phys. Rev. Lett. 116, 024301 (2016).Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of mie particles. Phys. Rev. Lett. 120, 044301 (2018).Shi, C., Dubois, M., Wang, Y. & Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proc. Natl. Acad. Sci. 114, 7250–7253 (2017).Hefner, B. T. & Marston, P. L. An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. J. Acoust. Soc. Am. 106, 3313–3316 (1999).Thomas, J.-L. & Marchiano, R. Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. Phys. Rev. Lett. 91, 244302 (2003).Ealo, J. L., Prieto, J. C. & Seco, F. Airborne ultrasonic vortex generation using flexible ferroelectrets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1651–1657 (2011).Jiang, X., Li, Y., Liang, B., Cheng, J.-C. & Zhang, L. Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett. 117, 034301 (2016).Ye, L. et al. Making sound vortices by metasurfaces. AIP Adv. 6, 085007 (2016).Naify, C. J. et al. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Appl. Phys. Lett. 108, 223503 (2016).Esfahlani, H., Lissek, H. & Mosig, J. R. Generation of acoustic helical wavefronts using metasurfaces. Phys. Rev. B 95, 024312 (2017).Marzo, A. et al. Realization of compact tractor beams using acoustic delay-lines. Appl. Phys. Lett. 110, 014102 (2017).Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016).Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M. & Camarena, F. Generating bessel beams with broad depth-of-field by using phase-only acoustic holograms. Sci. Rep. 9, 1–13 (2019).Jiménez-Gambín, S., Jiménez, N. & Camarena, F. Transcranial focusing of ultrasonic vortices by acoustic holograms. Phys. Rev. Appl. 14, 054070 (2020).Jiménez, N. et al. Formation of high-order acoustic bessel beams by spiral diffraction gratings. Phys. Rev. E 94, 053004 (2016).Wang, T. et al. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Appl. Phys. Lett. 109, 123506 (2016).Jiang, X. et al. Broadband and stable acoustic vortex emitter with multi-arm coiling slits. Appl. Phys. Lett. 108, 203501 (2016).Jiménez, N., Romero-García, V., García-Raffi, L. M., Camarena, F. & Staliunas, K. Sharp acoustic vortex focusing by fresnel-spiral zone plates. Appl. Phys. Lett. 112, 204101 (2018).Lu, J.-Y., Zou, H. & Greenleaf, J. F. Biomedical ultrasound beam forming. Ultrasound Med. Biol. 20, 403–428 (1994).Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am. 89, 550–558 (1991).ISO 17497-2:2012. Acoustics-Sound-Scattering Properties of Surfaces–Part 2: Measurement of the directional diffusion coefficient in a free field. International Organization for Standardization, Geneva, Switzerland, 2012

    Analytical modeling of one-dimensional resonant asymmetric and reciprocal acoustic structures as Willis materials

    Get PDF
    As building blocks of acoustic metamaterials, resonant scatterers have demonstrated their ability to modulate the effective fluid parameters, which subsequently possess extreme properties such as negative bulk modulus or negative mass density. Promising applications have been shown such as extraordinary absorption, focusing, and abnormal refraction for instance. However, acoustic waves can be further controlled in Willis materials by harnessing the coupling parameters. In this work, we derive the closed forms of the effective parameters from the transfer matrix in three asymmetric and reciprocal one-dimensional resonant configurations and exhibit the differences in terms of coupling coefficients. The way in which Willis coupling occurs in spatially asymmetric unit cells is highlighted. In addition, the analysis shows the absence of odd Willis coupling for reciprocal configurations. These effective parameters are validated against experimental and numerical results in the three configurations. This article paves the way of a novel physical understanding and engineering use of Willis acoustic materials

    Quasi-perfect absorption by sub-wavelength acoustic panels in transmission using accumulation of resonances due to slow sound

    Full text link
    [EN] We theoretically and experimentally report sub-wavelength resonant panels for low-frequency quasi-perfect sound absorption including transmission by using the accumulation of cavity resonances due to the slow sound phenomenon. The sub-wavelength panel is composed of periodic horizontal slits loaded by identical Helmholtz resonators (HRs). Due to the presence of the HRs, the propagation inside each slit is strongly dispersive, with near-zero phase velocity close to the resonance of the HRs. In this slow sound regime, the frequencies of the cavity modes inside the slit are down-shifted and the slit behaves as a subwavelength resonator. Moreover, due to strong dispersion, the cavity resonances accumulate at the limit of the bandgap below the resonance frequency of the HRs. Near this accumulation frequency, simultaneously symmetric and antisymmetric quasi-critical coupling can be achieved. In this way, using only monopolar resonators quasi-perfect absorption can be obtained in a material including transmission.This work has been funded by the Metaudible Project No. ANR-13-BS09-0003, cofunded by ANR and FRAE.Jimenez, N.; Romero García, V.; Pagneux, V.; Groby, J. (2017). Quasi-perfect absorption by sub-wavelength acoustic panels in transmission using accumulation of resonances due to slow sound. PHYSICAL REVIEW B-CONDENSED MATTER. 95(1). doi:10.1103/PhysRevB.95.014205S01420595

    Nonreciprocal and even Willis couplings in periodic thermoacoustic amplifiers

    Get PDF
    hermoacoustic amplifiers are analyzed in the framework of nonreciprocal Willis coupling. The closed form expressions of the effective properties are derived, showing that an applied temperature gradient causes the appearance of a nonreciprocal Willis coupling. Even and nonreciprocal Willis couplings are exhibited already in the first-order Taylor expansion of the solution and are of equal modulus but opposite sign, thus suggesting that the even Willis coupling is a reaction to the nonreciprocity introduced by the temperature gradients. These Willis couplings cause a coalescence point in the k space, which deviates from Re(k) = 0 (with k the wave number) and is thus a zero-group-velocity point, as well as the opening of an amplification gap at low frequency. Effective parameters and scattering properties are found in excellent agreement with experimental results. This article paves the way to further control the acoustic waves at very low frequencies with nonreciprocal systems

    Large pipelines filling model

    Get PDF
    [EN] The filling of pipelines must be made in conditions of maximum safety, since it is a delicate operation that can generate important system overpressures. The need, therefore, arises to design a filling protocol for big pipelines, which requires the use of a mathematical simulation model. The model is able to predict the evolution of pressure and flow during operation, as well as the filling time with enough precision, having compared the results with experimental data obtained on the field and those that the Allievi model provides, which uses the piston model as well as the method of characteristics. A restriction of this method is the application to a section of constant slope with a maximum of five suction cups distributed along the pipeline.[ES] El llenado de conducciones debe realizarse en condiciones de máxima seguridad, ya que es una operación delicada que puede generar importantes sobrepresiones en el sistema. Surge por tanto la necesidad de elaborar un protocolo de llenado de grandes conducciones, que requiere utilizar un modelo matemático de simulación. El modelo es capaz de predecir la evolución de presión y caudal durante la operación, así como el tiempo de llenado con bastante precisión, habiéndose comparado los resultados con datos experimentales obtenidos en campo y los que proporciona el programa Allievi, el cual utiliza el modelo pistón y el método de las características. El modelo elaborado tiene como limitación la aplicación a un tramo de pendiente constante con un máximo de cinco ventosas distribuidas a lo largo de la conducción.La elaboración del modelo matemático referido en el presente artículo para el cálculo del tiempo de llenado de una tubería, así como los ensayos de llenado de tuberías, forman parte de un Contrato de Investigación y Desarrollo entre la empresa Global Omnium y la Universitat Politècnica de València, para elaborar un protocolo de llenado y vaciado de grandes conducciones.Romero Sedó, AM.; Arrué, P.; García-Serra, J.; Espert, VB.; Biel, F. (2018). Modelo de llenado de grandes conducciones. Ingeniería del Agua. 22(4):239-254. doi:10.4995/ia.2018.9642SWORD239254224Abreu, J., Cabrera, E., Espert, V.B., García-Serra, J., Sanz, F. 2012. Transitorios Hidráulicos. Del régimen estacionario del golpe de ariete. Editorial UPV, Valencia, Spain.Arrué, P., Romero, A.M., Espert, V., García-Serra, J., Ponz, R. 2017. Caracterización de ventosas de admisión y expulsión de aire. V Jornadas de Ingeniería del Agua, Octubre 25-26, A Coruña, Spain, 233-234.Asociación Española de Normalización y Certificación - AENOR. 2001. UNE-EN 1074-1: Válvulas para el suministro de agua. Requisitos de aptitud al uso y ensayos de verificación apropiados. Parte 1: Requisitos generales. Madrid, Spain.Asociación Española de Normalización y Certificación - AENOR. 2001. UNE-EN 1074-2: Válvulas para el suministro de agua. Requisitos de aptitud al uso y ensayos de verificación apropiados. Parte 2: Válvulas de seccionamiento. Madrid, Spain.Asociación Española de Normalización y Certificación - AENOR. 2012. UNE-EN 1267. Válvulas industriales. Ensayo de resistencia al flujo utilizando agua como fluido de ensayo. Madrid, Spain.Harrison L. P. 1965. Fundamental Concepts and Definitions Relating to Humidity and Moisture Measurement and Control in Science and Industry. Proc. Int. Symp. On Humidity and Moisture, Vol.3 Fundamentals and Standards, Reinhold, New York, 3-256.Hyland, R.W., Wexler, A. 1983. Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15K to 473.15K. ASHRAE Trans. 89, 500-519.Iglesias-Rey, P. L., Fuertes-Miquel, V. S., García-Mares, F. J., Martínez-Solano, J. J. 2014. Comparative Study of Intake and Exhaust Air Flows of Different Commercial Air Valves. Procedia Engineering, 89, 1412-1419. https://doi.org/10.1016/j.proeng.2014.11.467International Organization for Standardization. 2008. ISO 9644 Agricultural irrigation equipment. Pressure losses in irrigation valves. Test method. Geneva, Switzerland.Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P. L., Garcia-Serra, J. 1999. Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. https://doi.org/10.1080/00221689909498518Tran, P. D. 2016. Pressure Transients Caused by Air-Valve Closure while Filling Pipelines. Journal of Hydraulic Engineering, 143(2), 04016082. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001245.U.S. Standard atmosphere. 1976. National Oceanic and Atmospheric Administration (NOAA), National Aeronautics and Space Administration (NASA), and the United States Air Force. Available from National Geophysical Data Center, Boulder, CO. Washington DC. EEUU.Wu, Y., Xu, Y., Wang, C. 2015. Research on air valve of water supply pipelines. Procedia Engineering, 119, 884-891. https://doi.org/10.1016/j.proeng.2015.08.959Zhou, L., Liu, D. 2013. Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. https://doi.org/10.1080/00221686.2013.78598

    Método para la obtención de las curvas características de ventosas mediante ensayos en laboratorio

    Full text link
    [ES] En este trabajo se propone y describe un método para la obtención experimental de las curvas que relacionan la presión en el interior de la tubería con el caudal másico expulsado o admitido por ventosas. El método de ensayos se caracteriza por su capacidad para reproducir las condiciones termodinámicas que se darían en el funcionamiento normal de las ventosas en redes de distribución de agua a presión. Mediante el procedimiento descrito, se ensayaron 35 modelos comerciales de ventosas de diámetros comprendidos entre 50 y 100 mm. Se presentan las curvas obtenidas, tanto en ensayos de admisión como de expulsión de aire, y se comparan los resultados con los datos proporcionados por los fabricantes.Arrue-Burillo, P.; Romero-Sedo, A.; Espert Alemany, VB.; García-Serra García, J.; Ponz Carcelén, R.; Biel Sanchís, F. (2020). Método para la obtención de las curvas características de ventosas mediante ensayos en laboratorio. Tecnoaqua. 1(41):2-10. http://hdl.handle.net/10251/171674S21014

    Memoria de la red de coordinación del tercer curso del grado en Ingeniería Multimedia

    Get PDF
    Durante el presente curso se ha constatado el asentamiento del tercer curso del grado en Ingeniería Multimedia, lo que se deriva de los informes de seguimiento de las asignaturas del curso que, en su gran mayoría, no han destacado problema alguno (con alguna excepción de la que se informa). Por otro lado, se ha llevado a cabo una iniciativa para contrastar si las dependencias entre las asignaturas de tercero con respecto a sus precedentes en el plan de estudios responden en realidad a los planteamientos que se hicieron durante el diseño del mismo, intentando descubrir carencias o inconsistencias en los contenidos. De esta manera, se han detectado dependencias que no son tales, dependencias que faltan y temarios de asignaturas básicas en los que, desde el punto de vista de las asignaturas de tercero faltan o sobran contenidos

    Caracterización experimental de flujos de admisión y expulsión de aire en ventosas

    Full text link
    [EN] The present paper summarizes the results obtained in air release and admission tests in air valves with diameter between 50 and 150 mm. The pressure-flow curves are presented and the pressure values at which dynamic closure is produced (before the water reaches the air valve) in the cases it occurs, as well as the pressure values at which the first float closes in non-slam air valves. Finally, the aforementioned values are compared with those listed in the manufacturers¿ catalogues.[ES] El presente artículo resumen los resultados obtenidos en ensayos de expulsión y admisión de aire en ventosas de entre 50 y 150 mm de diámetro. Se presentan las curvas presión-caudal y los valores de presión a los que se produce cierre dinámico (antes de que llegue el agua a la ventosa) en los casos en los que éste tiene lugar, así como también los valores de la presión a la que se produce el cierre del primer flotador en el caso de ventosas non-slam. Finalmente, se comparan los citados valores con los que figuran en los catálogos de los fabricantes.Arrue-Burillo, P.; Romero-Sedo, A.; Espert Alemany, VB.; García-Serra García, J.; Ponz Carcelén, R.; Biel Sanchís, F.; Alonso Campos, JC. (2019). Caracterización experimental de flujos de admisión y expulsión de aire en ventosas. Tecnoaqua. 1(35):74-82. http://hdl.handle.net/10251/160579748213
    corecore