22,499 research outputs found

    Circuit Quantum Electrodynamics with a Superconducting Quantum Point Contact

    Get PDF
    We consider a superconducting quantum point contact in a circuit quantum electrodynamics setup. We study three different configurations, attainable with current technology, where a quantum point contact is coupled galvanically to a coplanar waveguide resonator. Furthermore, we demonstrate that the strong and ultrastrong coupling regimes can be achieved with realistic parameters, allowing the coherent exchange between a superconducting quantum point contact and a quantized intracavity field.Comment: 5 pages, 4 figures. Updated version, accepted for publication as a Rapid Communication in Physical Review

    Polarization microvariability of BL Lac objects

    Get PDF
    We present the results of a systematic observational campaign designed to search for microvariability in the optical polarization of BL Lac objects. We have observed a sample formed by 8 X-ray-selected and 10 radio-selected sources, looking for rapid changes in both the degree of linear polarization and the corresponding polarization angle. The whole campaign was carried out along the last three years, and most of the objects were observed at least on two consecutive nights. The statistical properties of both classes of BL Lac objects are compared, and some general conclusions on the nature of the phenomenon are drawn. In general, radio selected sources seem to display higher duty cycles for polarimetric microvariability and, on average, they have a stronger polarization.Comment: 12 pages, 15 figures, accepted for publication in A&

    Relativistic quantum mechanics of a Dirac oscillator

    Get PDF
    The Dirac oscillator is an exactly soluble model recently introduced in the context of many particle models in relativistic quantum mechanics. The model has been also considered as an interaction term for modelling quark confinement in quantum chromodynamics. These considerations should be enough for demonstrating that the Dirac oscillator can be an excellent example in relativistic quantum mechanics. In this paper we offer a solution to the problem and discuss some of its properties. We also discuss a physical picture for the Dirac oscillator's non-standard interaction, showing how it arises on describing the behaviour of a neutral particle carrying an anomalous magnetic moment and moving inside an uniformly charged sphere.Comment: 19 pages, 1 figur

    Word-Graph Based Applications for Handwriting Documents: Impact of Word-Graph Size on Their Performances

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-19390-8 29Computer Assisted Transcription of Text Images (CATTI) and Key-Word Spotting (KWS) applications aim at transcribing and indexing handwritten documents respectively. They both are approached by means of Word Graphs (WG) obtained using segmentation-free handwritten text recognition technology based on N-gram Language Models and Hidden Markov Models. A large WG contains most of the relevant information of the original text (line) image needed for CATTI and KWS but, if it is too large, the computational cost of generating and using it can become unaffordable. Conversely, if it is too small, relevant information may be lost, leading to a reduction of CATTI/KWS in performance accuracy. We study the trade-off between WG size and CATTI &KWS performance in terms of effectiveness and efficiency. Results show that small, computationally cheap WGs can be used without loosing the excellent CATTI/KWS performance achieved with huge WGs.Work partially supported by the Spanish MICINN projects STraDA (TIN2012-37475-C02-01) and by the EU 7th FP tranScriptorium project (Ref:600707).Toselli, AH.; Romero Gómez, V.; Vidal Ruiz, E. (2015). Word-Graph Based Applications for Handwriting Documents: Impact of Word-Graph Size on Their Performances. En Pattern Recognition and Image Analysis. Springer. 253-261. https://doi.org/10.1007/978-3-319-19390-8_29S253261Romero, V., Toselli, A.H., Vidal, E.: Multimodal Interactive Handwritten Text Transcription. Series in Machine Perception and Artificial Intelligence (MPAI). World Scientific Publishing, Singapore (2012)Toselli, A.H., Vidal, E., Romero, V., Frinken, V.: Word-graph based keyword spotting and indexing of handwritten document images. Technical report, Universitat Politècnica de València (2013)Oerder, M., Ney, H.: Word graphs: an efficient interface between continuous-speech recognition and language understanding. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 119–122, April 1993Bazzi, I., Schwartz, R., Makhoul, J.: An omnifont open-vocabulary OCR system for English and Arabic. IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 495–504 (1999)Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge (1998)Ström, N.: Generation and minimization of word graphs in continuous speech recognition. In: Proceedings of IEEE Workshop on ASR 1995, Snowbird, Utah, pp. 125–126 (1995)Ortmanns, S., Ney, H., Aubert, X.: A word graph algorithm for large vocabulary continuous speech recognition. Comput. Speech Lang. 11(1), 43–72 (1997)Wessel, F., Schluter, R., Macherey, K., Ney, H.: Confidence measures for large vocabulary continuous speech recognition. IEEE Trans. Speech Audio Process. 9(3), 288–298 (2001)Robertson, S.: A new interpretation of average precision. In: Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2008), pp. 689–690. ACM, USA (2008)Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, USA (2008)Romero, V., Toselli, A.H., Rodríguez, L., Vidal, E.: Computer assisted transcription for ancient text images. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 1182–1193. Springer, Heidelberg (2007)Fischer, A., Wuthrich, M., Liwicki, M., Frinken, V., Bunke, H., Viehhauser, G., Stolz, M.: Automatic transcription of handwritten medieval documents. In: 15th International Conference on Virtual Systems and Multimedia, VSMM 2009, pp. 137–142 (2009)Pesch, H., Hamdani, M., Forster, J., Ney, H.: Analysis of preprocessing techniques for latin handwriting recognition. In: ICFHR, pp. 280–284 (2012)Evermann, G.: Minimum Word Error Rate Decoding. Ph.D. thesis, Churchill College, University of Cambridge (1999

    From subdiffusion to superdiffusion of particles on solid surfaces

    Get PDF
    We present a numerical and partially analytical study of classical particles obeying a Langevin equation that describes diffusion on a surface modeled by a two dimensional potential. The potential may be either periodic or random. Depending on the potential and the damping, we observe superdiffusion, large-step diffusion, diffusion, and subdiffusion. Superdiffusive behavior is associated with low damping and is in most cases transient, albeit often long. Subdiffusive behavior is associated with highly damped particles in random potentials. In some cases subdiffusive behavior persists over our entire simulation and may be characterized as metastable. In any case, we stress that this rich variety of behaviors emerges naturally from an ordinary Langevin equation for a system described by ordinary canonical Maxwell-Boltzmann statistics

    Grain growth competition during melt pool solidification -- Comparing phase-field and cellular automaton models

    Full text link
    A broad range of computational models have been proposed to predict microstructure development during solidification processing but they have seldom been compared to each other on a quantitative and systematic basis. In this paper, we compare phase-field (PF) and cellular automaton (CA) simulations of polycrystalline growth in a two-dimensional melt pool under conditions relevant to additive manufacturing (powder-bed fusion). We compare the resulting grain structures using local (point-by-point) measurements, as well as averaged grain orientation distributions over several simulations. We explore the effect of the CA spatial discretization level and that of the melt pool aspect ratio upon the selected grain texture. Our simulations show that detailed microscopic features related to transient growth conditions and solid-liquid interface stability (e.g. the initial planar growth stage prior to its cellular/dendritic destabilization, or the early elimination of unfavorably oriented grains due to neighbor grain sidebranching) can only be captured by PF simulations. The resulting disagreement between PF and CA predictions can only be addressed partially by a refinement of the CA grid. However, overall grain distributions averaged over the entire melt pools of several simulations seem to lead to a notably better agreement between PF and CA, with some variability with the melt pool shape and CA grid. While further research remains required, in particular to identify the appropriate selection of CA spatial discretization and its link to characteristic microstructural length scales, this research provides a useful step forward in this direction by comparing both methods quantitatively at process-relevant length and time scales
    • …
    corecore