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We consider a superconducting quantum point contact in a circuit quantum electrodynamics setup. We
study three different configurations, attainable with current technology, where a quantum point contact is
coupled galvanically to a coplanar waveguide resonator. Furthermore, we demonstrate that the strong and
ultrastrong coupling regimes can be achieved with realistic parameters, allowing the coherent exchange between

a superconducting quantum point contact and a quantized intracavity field.
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Introduction. A quantum point contact (QPC) is a
constriction,! where electronic transport is supported by a
small number of conducting channels, and the size of the
constriction is smaller than the inelastic mean free path. In
the normal state the resistance of the contact is determined by
the transmission of those channels. If the contact is made
of a superconducting metal, the dissipationless current is
carried by the Andreev bound states (ABSs) localized at the
junction region over the superconducting coherence length.>!”
There is a pair of ABSs for each conducting channel, and
their energies, +=F,, depend on the phase difference ¢
across the junction and the transmission coefficient t of the
conducting channel E4(¢,7) = Ay/1 — T sin?(¢/2), where A
is the order parameter of the bulk superconducting electrodes.
The energies of the ABSs are defined with respect to the
Fermi level, and the current carried by each state is given
by I. = +(2e/h)0E4/0¢. The total dc Josephson current
through a QPC, consisting of a single conducting channel,
is given by the contribution of each ABS weighted by the
state occupation, I = I_n(—E,) + I n(E,), where n(E) is
the Fermi distribution function. Recent experiments on QPC
have shown the correctness of describing the Josephson effect
in terms of the ABSs.'*"!® In addition, a direct spectroscopy
of the ABSs was done in a carbon nanotube attached to super-
conducting electrodes by means of tunneling spectroscopy.'®

On the other hand, several theoretical works have studied
ABSs and their dynamics.*'” In particular, it was recently
proposed to use a QPC as a qubit,’ introducing an effective
Hamiltonian describing the two-level system of ABSs. It
has also been shown that in the zero-temperature limit the
dynamics of the QPC in a microwave field is well described by
atwo-level effective Hamiltonian.'? In this sense, it is predicted
that the transition between the levels induced by the microwave
field leads to a drastic suppression of the dc Josephson current.
However, though several attempts to detect such transitions
have been carried out, these have not been directly observed
yet. In this context, it would be interesting to develop a theory
involving a QPC coupled to a superconducting resonator in
the context of state-of-the-art circuit quantum electrodynamics
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(QED).'*-?7 This may serve as an alternative physical scenario
for probing the ABS dynamics, as well as a test bed for
fundamental aspects in light-matter interaction.

In this work, we propose a circuit QED setup using a
superconducting QPC coupled galvanically?® to a coplanar
waveguide resonator (CWR). Following previous works,?%3
we develop a theoretical framework to study three experimen-
tal configurations, shown in Fig. 1, and we present numerical
simulations showing distinct cavity QED features as compared
to the semiclassical case. Furthermore, we demonstrate that,
for the configuration in Fig. 1(c), one can reach the ultrastrong
coupling (USC) regime of circuit QED.?-33

The model. Our generic setup consists of a supercon-
ducting loop containing a QPC coupled galvanically to a
inhomogeneous resonator’®3>33 [see Fig. 1(a)]. We neglect
the geometrical inductance of the loop, which we consider'®
of the order of 20 pH, with respect to the inductance of the
QPC (Lgpc > 10 nH).'* The system Hamiltonian reads

H = Hgpc(¢a) + Hewr. (1)

We consider low temperatures (7' =0) and sufficiently small
frequencies in order to suppress transitions between the ABS
and the continuum part of the spectrum. In this case, as shown
in Ref. 10, one can describe the transport through the QPC by
means of the effective Hamiltonian derived by Zazunov et al.,’

Hapc($a) = Ae™ 792 [cos(¢y /)02 + /T sin(¢a/2)0, ],
(2)
where r = 1 — t stands for the reflection coefficient and the
Pauli matrices o, , . are written in the ballistic basis, defined
by the eigenstates of the current for a perfectly transmitted

conducting channel.'®
The CWR is described by a sum of harmonic oscillators

1/2\°0> 1/h)\°
Howr@) =) (=) 2+ ) Copdr. @3
cwr(¢n) Zz(h) . +2<Qe> O E)
such that the total phase distribution on the CWR reads
d(x,1) =), un(x)p,(r), where u,(x) is the spatial eigen-

mode. The phase variation along the segment of the res-
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(a) Al2=21

FIG. 1. (Color online) (a) Superconducting loop containing a
QPC coupled galvanically to a CWR (see inset). (b) Atomic SQUID
(aSQUID) with a QPC in series with a Josephson junction. (c)
aSQUID with the QPC in parallel with a Josephson junction.

onator Ax, shared with the QPC loop [see Fig. 1(a)], reads
¢r =, 8y, where 8, = u, (xo + Ax/2) — u,(xo — Ax/2)
stands for the difference of the nth spatial eigenmode along
Ax, and evaluated at the loop position xi,. The phase ¢,
is related to the annihilation and creation operators ¢, =
(2e/h)/h /(Za),,C,)(a,Tl + a,), where w, is the corresponding
eigenfrequency and C, is the capacitance of the CWR; the con-
jugate momentum reads 6, =i(h/2e)\/hw,C, /Z(a,T, —ay).
Typical resonator parameters are C, ~ 850 fF, the impedance
Z =./L,/C, ~ 50, where L, is the CWR inductance, and
frequency w, /2w ~ 1-10 GHz for the fundamental mode.*?
In all cases displayed in Fig. 1, the description of the CWR
in terms of eigenmodes is still valid if the inductance L,
of the resonator segment Ax is small as compared to the
inductance of the QPC. Otherwise, the mode structure will
depend strongly on the nonlinearities coming from the QPC
current. Under this approximation most of the current will
flow through the resonator, and the QPC will act as a small
perturbation. For a CWR made of aluminum with width S =
50 nm (at the constriction), thickness of the central electrode
t = 50 nm, length of the constriction Ax = 5 um, and distance
between the ground plane and the edge of the central line W =
4.95 um, we estimate L, >~ 8 pH <« Lqpc, thus justifying the
approximation. In order to simplify our analysis, we consider
the simplest case where the QPC interacts with the lowest
frequency eigenmode, n = 0, supported by the resonator.
The CWR and QPC are mutually coupled via the phase
difference along the segment of the resonator Ax. Due to the
flux quantization in superconducting loops, one can relate the
external flux threading the loop, ®, with the superconducting
phase differences, ), ¢, = 27f + 27w N, where we have
defined the frustration parameter f = ®/®dy, with &y =
h/2e the flux quantum. In our treatment we will consider
no trapped flux in the loop (N = 0) and we shall neglect
tunneling effects coming from coherent phase slip.**** In
particular, for the situation of Fig. 1(a), the phase across
the QPC (¢,) and the phase drop along the segment Ax
are related by ¢, = ¢, + 2 f. The superconducting phase
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difference ¢, is given by ¢, = 8o(2¢/h)(h/2w0C,)"/*(a + a').
We will also assume that |¢,| < 1, a condition satisfied with
current available values.?® In this case, we can expand the
Hamiltonian (2) up to first order on ¢,. In addition, we rotate
Hgpc in Eq. (2) to the instantaneous Andreev states basis'”
by means of the transformation Hg;)c(d)u) =U Hgf,)c(%)U f
where U = ¢!%¢!/49: Under this unitary transformation
the whole Hamiltonian reads

H =hwoa'a + Es(f,7)0, —hgla +a')(A.0, — A,0,),

“

where g = %%Zr sin(r £)80(2e /) (/2w C,)'/? is the cou-
pling strength, while A, and A, are the longitudinal and
transversal coefficients, respectively;

_ cos(f) _ /1 sin(xf)
c EA(f’T)’ B EA(f7T) .

Notice that for a frustration f ~ 0.5, a large (small) contri-
bution of the transversal (longitudinal) coupling is obtained.
This is important since in a small vicinity of f = 0.5 the
QPC and the resonator can exchange excitations, so that ABS
spectroscopy is possible. On the other hand, away from this
working point the QPC-resonator interaction is dominated by
the longitudinal coupling (A), where the field of the resonator
will be displaced depending on the state of the QPC. These
features show the versatility of our setup in order to engineer
the QPC-resonator coupling, and will be the base for studying
the underlying physics in three different setups.

OPC coupled to a coplanar waveguide resonator. We first
analyze the configuration of Fig. 1(a), i.e., a superconducting
loop containing a QPC galvanically coupled to the CWR. The
dynamics of this setup is described by the Hamiltonian in
Eq. (4). This resembles the coupling of a spin to a magnetic
field with axial and longitudinal components and has the
same structure as the Hamiltonian describing Cooper pair
boxes or flux qubits.'*2%28-30:32.33 1t i5 worth mentioning that
for parameters satisfying the conditions wg + 2E4(f,t)/h >
{gAx,lwo — 2E4(f,7)/h|} and wy > g A, the Hamiltonian (4)
can be approximated by the Jaynes-Cummings model*® for
which the rotating-wave approximation holds.

We have studied numerically the dynamics of the
Hamiltonian in Eq. (4) for an initial state having a single
excitation in the resonator and the QPC in the ground state,
i.e., |¥o) = |—)|1),. Figure 2 shows a contour plot of (o,)
as a function of a normalized time, and the external flux
applied to the loop close to the resonance condition wy =
2(A/m)[1 — © sin®(r f)]'/?, that leads to the working point

1 L (T N\ ¢
fo=—aresin | | — |1~ (E) . (6)

This figure reveals the population inversion of Andreev levels
near the working point fy, as expected from the Jaynes-
Cummings dynamics. This feature is more clearly shown
in the inset of Fig. 2, where we show the time evolution
of (o,) at the resonance fy, = 0.4712. In this simulation
the CWR is described by a single mode with frequency
wp/2mw = 10.52 GHz, and a phase drop |¢,| ~ 0.0013 (see
Ref. 29). For the QPC made of aluminum, we consider only one

&)
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FIG. 2. (Color online) (a) Contour plot showing population
inversion of Andreev levels for initial state |1y} = |—)|1),. The inset

shows the mean value of ¢, as a function of normalized time, #(1/go),
at the resonance condition fy = 0.4712.

conducting channel with high transmission, v = 0.994, and
A/h ~ 44.256 GHz (corresponding to a gap A ~ 0.183 meV
for Al).'® These values lead to a ratio g JwoA ~ 0.002,
where gg = %ATTZI(SO(Ze/h)(h/ZwOC,)l/Z. In principle, for these
particular values the rotating-wave approximation can be
safely used.

It is worth mentioning that the vacuum Rabi oscillations
shown in Fig. 2 involve a time domain measurement of the
Andreev levels. This can be done by, first, applying an external
field via an on-chip flux line on the loop containing the QPC
to far detune it from the resonator. Then, an amplitude-shaped
flux pulse fy is applied to tune the qubit into resonance
with the cavity field for a variable time t. Then, probe
the cavity frequency in a dispersive regime where the shift
of the resonator frequency is proportional to the Andreev
level population imbalance.*’ In addition, the spectrum of the
QPC-resonator system is shown in Fig. 3, which should be
obtained via a cavity transmission measurement at frequency
wy.>? The inset shows the avoided crossing between the single-
photon resonator state and the excited Andreev level as the
QPC is brought into resonance at f, = 0.4712. The spectrum
also shows avoided crossings coming from higher excitation
states around f = 0.4276, yielding a two-photon transition. A
generalized expression for higher-order resonances is given by
[cf. Eq. (6)] fo = L arcsin[1[1 — (BJ2)?]12] (N = 1,2,..)),
which corresponds to possible multiphoton transitions in the
present setup.

Atomic SQUID coupled to a coplanar waveguide resonator.
For a proper characterization of the QPC and to control its
phase, experiments have been carried out on an asymmetric
superconducting quantum interference device (SQUID) loop
consisting of a Josephson tunnel junction (JJ) in series with
the QPC.!'>!%16 Here, we consider such an atomic SQUID
(aSQUID) galvanically coupled to the resonator as shown in
Fig. 1(b). In this configuration, the relation among the phases
associated to the QPC (¢, ), the Josephson junction (¢, ), and ¢,
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FIG. 3. (Color online) Energy spectrum for the configuration
shown in Fig. 1(a). The color codes stand for the energy differences,
computed numerically: the solid-blue line (solid line) stands for (£, —
Ey)/h; the dashed-green line (dashed line) stands for (E, — Ey)/h;
the dotted-blue line (dotted line) stands for; and the dot-dashed-red
line (dot-dashed line) stands for (E4 — Eg)/h. The inset shows the
characteristic anticrossings representative of the Jaynes-Cummings
model.

reads ¢, = ¢, + ¢, + 27 f. The experiments considering this
setup,'>!416 implement a large Josephson junction such that
the Josephson energy is larger than the charging energy, E; >
Ec. In this case, the JJ phase experiences small fluctuations
and can be described by a harmonic oscillator characterized
by annihilation and creation operators b,b, and plasma
frequency w, = (ZEIC/hCJ)l/Z with C; and I the Josephson
junction capacitance and critical current, respectively. Under
this assumption we can expand the Hamiltonian, Eq. (1),
around a minimum. Within this description the Hamiltonian
for the setup of Fig. 1(b) reads

H = ha)oaTa + ha)prb + EA(f, 7)o,
A%
- ":7 Sln(nf)(Azo'z - Axox)(¢r + ¢p)

r— 2 cosinf) — rsin?Gr )]
B . i
SEA(fv t) ‘

— 2/ sin(r f) cos( o}y + )7, ™

where we have defined ¢, = (2e/h)(h/2C1w,,)1/2(b +bh).
In obtaining the Hamiltonian (7), we considered realistic
values of ¢, and ¢, up to second order. For instance, by
taking a Josephson junction with critical current I¢c ~ 1 uA,
capacitance C; ~ 100 fF, and plasma frequency w,/2m ~
27 GHz,® one obtains |¢,| ~ 0.16, while for the phase
drop at the constriction we take |¢,| ~ 0.0013. Notice that
the dynamics results in a Stark shift of the Andreev levels
depending on the number of excitations in the JJ and the
CWR. Figures 4(a) and 4(b) show the spectrum for the
setup of Fig. 1(b), calculated via a numerical diagonalization
of Hamiltonian (7). It shows that the presence of the JJ
induces an ac Stark shift of the Andreev levels as depicted
in Fig. 4(b). We have estimated numerically a renormalized
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FIG. 4. (Color online) Energy spectrum for two cases of Fig. 1:
(a) and (b) correspond to Fig. 1(b), while (c) and (d) correspond to
Fig. 1(c). The color codes represent the computed energy differences.
For (a)—(c) the solid-blue line (solid line) stands for (£, — Eg)/h, the
dashed-green line (dashed line) stands for (E; — Ej)/h, the dotted-
blue line (dotted line) stands for (E3 — Ey)/h, and the dot-dashed-red
line (dot-dashed line) stands for (E4 — Ey)/h. The color codes in
(d) are specified in the main text.

resonance condition fy ~ 0.470 59, where the QPC exchanges
excitations with the resonator, as observed in the displayed
anticrossings.

Ultrastrong coupling regime. Let us consider the setup
shown in Fig. 1(c), where the Josephson junction is now part
of the resonator line. This setup is characterized with two
main effects: (i) the renormalization of resonator eigenfre-
quencies, which are now given by the dispersion relation?®-
ky = (2Lo/Ly)(1 — a),zl/a)f,) cot(k,l), where L is the junction
inductance, L is the inductance per unit length of the reson-
ator, and [/ is half of the cavity length; and (ii) an increase
of the coupling strength g due to the local modification of
the inductance of the single-mode resonator. For instance,
if one takes L; ~ 0.8 nH, C; ~ 20 fF, one obtains w, ~
27 x 40 GHz and a resonator frequency wg ~ 2w x 8.7 GHz.
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These values imply a phase drop |¢,| = 0.0835 such that
the strength coupling of the QPC-resonator interaction at
the resonance phase in Eq. (6) reaches g/wpA ~ 0.21, well
situated in the ultrastrong coupling regime of light-matter
interaction. This value is not restrictive and one for which
we may reach ratios of g/woA > 0.2 for suitable parameters
of the Josephson junction, and realize the regimes that have
received great theoretical and experimental attention in recent
years.??3173340 Figures 4(c) and 4(d) show spectra for the
USC coupling strength g/woA ~ 0.21. The solid black lines
in Fig. 4(d) correspond to the spectrum calculated from
Hamiltonian (4), while the dashed green lines represent the
Jaynes-Cummings model. The discrepancy between the two
models is due to the Bloch-Siegert shift introduced by the
counterrotating terms in the full Hamiltonian (4). This shift
was experimentally observed in a circuit QED setup with a
flux quit,®> where a ratio g/wyA = 0.1 has been reached.
In this sense, we pave the way to study quantum optical
properties associated to the QPC-CWR coupling in circuit
QED.

Finally, note that dissipative mechanisms affecting the
QPC coherence have already been studied.*® The theoretical
estimated relaxation and dephasing rates are of the order of
108 Hz. However, this value can be substantially decreased by
proper control of the electromagnetic environment.*®

Conclusions. We have presented a general frame for
studying the quantum dynamics of a superconducting point
contact galvanically coupled to a single-mode resonator. We
have analyzed three possible configurations that could be
experimentally implemented and exhibit distinct cavity QED
features as compared to semiclassical models. In particular,
we have shown that the proposed QPC-CWR dynamics
could reach the strong and ultrastrong coupling regimes of
light-matter interaction, allowing the proposed setup to be
considered as an alternative quantum device for circuit QED
technology.
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