27,623 research outputs found

    Network Structure, Efficiency, and Performance in WikiProjects

    Full text link
    The internet has enabled collaborations at a scale never before possible, but the best practices for organizing such large collaborations are still not clear. Wikipedia is a visible and successful example of such a collaboration which might offer insight into what makes large-scale, decentralized collaborations successful. We analyze the relationship between the structural properties of WikiProject coeditor networks and the performance and efficiency of those projects. We confirm the existence of an overall performance-efficiency trade-off, while observing that some projects are higher than others in both performance and efficiency, suggesting the existence factors correlating positively with both. Namely, we find an association between low-degree coeditor networks and both high performance and high efficiency. We also confirm results seen in previous numerical and small-scale lab studies: higher performance with less skewed node distributions, and higher performance with shorter path lengths. We use agent-based models to explore possible mechanisms for degree-dependent performance and efficiency. We present a novel local-majority learning strategy designed to satisfy properties of real-world collaborations. The local-majority strategy as well as a localized conformity-based strategy both show degree-dependent performance and efficiency, but in opposite directions, suggesting that these factors depend on both network structure and learning strategy. Our results suggest possible benefits to decentralized collaborations made of smaller, more tightly-knit teams, and that these benefits may be modulated by the particular learning strategies in use.Comment: 11 pages, 5 figures, to appear in ICWSM 201

    Primordial black hole evolution in two-fluid cosmology

    Get PDF
    Several processes in the early universe might lead to the formation of primordial black holes with different masses. These black holes would interact with the cosmic plasma through accretion and emission processes. Such interactions might have affected the dynamics of the universe and generated a considerable amount of entropy. In this paper we investigate the effects of the presence of primordial black holes on the evolution of the early universe. We adopt a two-fluid cosmological model with radiation and a primordial black hole gas. The latter is modelled with different initial mass functions taking into account the available constraints over the initial primordial black hole abundances. We find that certain populations with narrow initial mass functions are capable to produce significant changes in the scale factor and the entropy.Comment: 8 pages, 7 figures. Modified to match the published versio

    Gauge invariant fluctuations of the metric during inflation from new scalar-tensor Weyl-Integrable gravity model

    Get PDF
    We investigate gauge invariant scalar fluctuations of the metric during inflation in a non-perturbative formalism in the framework of a recently introduced scalar-tensor theory of gravity formulated on a Weyl-Integrable geometry. We found that the Weyl scalar field can play the role of the inflaton field in this theory. As an application we study the case of a power law inflation. In this case the quasi-scale invariance of the spectrum for scalar fluctuations of the metric is achieved for determined values of the ω\omega parameter of the scalar-tensor theory. In our formalism the physical inflaton field has a geometrical origin.Comment: 9 pages, no figures. This is a revised version accepted for publication in Physical Review
    • …
    corecore