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ABSTRACT

Several processes in the early universe might lead to the formation of primordial
black holes with different masses. These black holes would interact with the cosmic
plasma through accretion and emission processes. Such interactions might have af-
fected the dynamics of the universe and generated a considerable amount of entropy.
In this paper we investigate the effects of the presence of primordial black holes on the
evolution of the early universe. We adopt a two-fluid cosmological model with radia-
tion and a primordial black hole gas. The latter is modelled with different initial mass
functions taking into account the available constraints over the initial primordial black
hole abundances. We find that certain populations with narrow initial mass functions
are capable to produce significant changes in the scale factor and the entropy.
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1 INTRODUCTION

There is overwhelming evidence supporting the existence of
black holes in the universe. Studies of stellar and gas dy-
namics strongly suggest the presence of supermassive black
holes (MBH ∼ 106 − 109 M�) at the centre of most galaxies
(e.g. Ferrarese & Ford 2005). At smaller scales, stellar-mass
black holes (MBH ∼ 3−10 M�) are thought to be the result
of the collapse of massive stars (Neugebauer 2003). Their
presence is manifested in X-ray binaries (XRBs). There are
currently about 60 stellar black hole candidates (Corral-
Santana et al. 2016). Additionally, recent gravitational wave
detections have revealed the existence of binary systems of
black holes with several tens of solar masses at moderate
redshifts (Abbott et al. 2016a,b, 2017).

Under the extreme conditions of the early universe,
black holes can be formed from direct collapse (Zel’dovich &
Novikov 1966; Hawking 1971; Carr & Hawking 1974). These
are called Primordial Black Holes (PBHs) and have been
extensively investigated (see Khlopov 2010 for a review).

A PBH would form with a mass of order the horizon
mass MH(t),

MPBH ∼MH(t) ∼ c3t

G
∼ 1015

(
t

10−23 s

)
g, (1)

as can be seen by a simple comparison between the cos-
mic density at time t after the Big Bang and the density

? E-mail: emgutierrez@iar.unlp.edu.ar

associated with a black hole of mass M . This implies that
PBHs could span a wide range of masses. In particular, they
might be small enough for Hawking radiation to be impor-
tant (Hawking 1974).

PBH formation requires the existence of large inhomo-
geneities in the early universe (Carr & Hawking 1974; Carr
1975). Independently of the source of these inhomogeneities,
the formation can be enhanced by some processes, such as
phase transitions –for example from bubble collisions (Craw-
ford & Schramm 1982; Hawking et al. 1982), collapse of cos-
mic strings (Hawking 1987; Polnarev & Zembowicz 1991)
or domain walls (e.g Berezin et al. 1983; Caldwell et al.
1996)– or a sudden reduction in the pressure at the quark-
hadron era (Jedamzik 1997; Jedamzik & Niemeyer 1999).
Furthermore, applications of “critical phenomena” to PBH
formation suggest that their spectrum could go well below
the horizon mass (e.g. Niemeyer & Jedamzik 1998; Green
& Liddle 1999). PBH formation can also occur in a matter-
dominated universe (see, e.g., Khlopov & Polnarev 1980;
Polnarev & Khlopov 1985). For more details on all these
mechanisms the reader is referred to Carr et al. (2010).

Although PBHs have not been detected so far, their
study covers several areas of interest: baryogenesis (Barrow
1980; Lindley 1981; Barrow et al. 1991a; Hook 2014), dark
matter (see Carr et al. 2016b and references therein), Big
Bang nucleosynthesis (Zeldovich et al. 1977; Vainer et al.
1978; Kohri & Yokoyama 2000), reonization of the universe
(Gibilisco 1998), and gravitational waves (Bird et al. 2016;
Sasaki et al. 2016).
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Several constraints have been imposed on the initial
number of PBHs formed (see Carr et al. 2010 for a review).
Most of these limits are related to the different potential
interactions between PBHs and other astrophysical objects
(e.g. gravitational interactions) and the observables result-
ing from black hole evaporation. The importance of these
constraints is that they indirectly impose restrictions on
the conditions of the early universe and, hence, on differ-
ent early universe models (e.g. inflation models, Josan &
Green 2010; Peiris & Easther 2008). However, not all con-
straints on PBHs are equally reliable. For example, at the
lowest masses (M . 106 g) the only available constraint
relies on a strong assumption, namely that black holes do
not completely evaporate but leave behind Planck-mass relic
particles (MacGibbon 1987).

The presence of a PBH population in the early uni-
verse could have affected the cosmic evolution directly. The
main feature of such a population is its Initial Mass Func-
tion (IMF). According to the particular mechanism and
timescale of the formation process, this IMF can either ex-
tend over a wide mass range or be narrow and centred on
a certain mass. Barrow et al. (1991b) studied the cosmic
evolution of the early universe considering radiation and a
population of PBHs with a power-law IMF; they assume
that the two components interacted only through Hawking
evaporation. Other scenarios considered in later works in-
volve PBH populations with narrow or monoenergetic IMFs
(e.g. Barrow et al. 1992; Zimdahl & Pavón 1998; Brevik &
Halnes 2003) or additional space-time dimensions (Borunda
& Masip 2010).

In this work, we investigate the early universe evolution
considering PBH populations with both extended and nar-
row IMFs, taking into account the best available constraints
on PBH abundances in the characterization of the scenar-
ios. We consider a FLRW space-time and a two-perfect-fluid
model: a PBH gas with a dust-like equation of state, and a
relativistic component (radiation). The fluids exchange en-
ergy through Hawking evaporation and accretion on to the
black holes. The energy exchange is coupled to the metric
scale factor through the Friedmann equations.

The structure of this article is the following: in Sec. 2 we
briefly summarise the most significant available constraints
about PBH abundances. In Sec. 3 we analyse the energy
exchange between a black hole and a radiation bath. Then,
in Sec. 4 we extend this analysis to a black hole population
interacting with radiation in a cosmological background. We
present the results in Sec. 5, and the conclusions and final
remarks in Sec. 6.

2 PBH ABUNDANCES

The constraints on the initial abundances of PBHs are gen-
erally expressed in terms of the fraction of the energy density
of the universe that goes to PBHs at their formation epoch:
β = ρPBH/ρtot.

The lifetime of a black hole with mass M due to Hawk-
ing evaporation can be estimated as (Hawking 1975)

τlife ∼ 1010
( M

1015 g

)
yr. (2)

As described in Carr et al. (2010), this implies that a) PBHs

formed with mass of order of 1015 g should be evaporating
at the present epoch producing gamma rays, positrons, and
antiprotons that contribute to the diffuse gamma ray back-
ground and the cosmic ray flux (e.g. Wright 1996; Carr et al.
2016a). b) PBHs with initial mass M < 1015 g are already
evaporated; however, their existence could have affected dif-
ferent processes in the early universe. Ones that evaporated
within the first second after the Big Bang could have gener-
ated most of the entropy of the universe (e.g. Zeldovich &
Starobinskii 1976) or altered the baryogenesis (Dolgov et al.
2000; Bugaev et al. 2003) and the Big Bang nucleosynthe-
sis (e.g. Zeldovich et al. 1977; Vainer et al. 1978). These
PBHs can also evaporate into neutrinos, hadrons, and other
massive particles, or leave behind Planck-mass relic particles
contributing to the cold dark matter (CDM) (e.g. Bugaev
& Konishchev 2002; Lemoine 2000; MacGibbon 1987; Bar-
row et al. 1992; Alexander & Mészáros 2007). c) PBHs with
M > 1015 g have lifetimes longer than the age of the uni-
verse, and hence they would still exist and would be de-
tectable by their gravitational effects. Indeed, given the neg-
ative results obtained so far in the search for particle dark
matter (in particular weakly-interacting massive particles,
Akerib et al. 2016), PBHs have become interesting CDM
candidates (see, e.g., Chapline 1975; Carr et al. 2016b). In
addition, these PBHs can interact with other astrophysical
objects in several ways; for example, they might be captured
by a neutron star and the star being accreted (Capela et al.
2013), or they could have played a role as seeds of supermas-
sive black holes in the centre of galaxies. Recently, they have
been also proposed as sources of gravitational wave events
(Garćıa-Bellido 2017).

Since these effects are not observed, constraints on the
PBH abundances are imposed in accordance with the sen-
sitivity of current observations. Figure 1 shows the most
updated limits. The constraints on black hole relics are the
only ones that can limit the quantity of less massive PBHs
formed. It is important to remark, as was done by Carr et al.
(2017) and Kühnel & Freese (2017), that the constraints in
Fig. 1 are derived considering monoenergetic PBH popula-
tions. The case of PBHs with an extended mass function is
quite different and depends on the particular form of the
IMF. Following Carr et al. (2017), we summarise the main
aspects of this treatment in Appendix A.

3 BLACK HOLE MASS VARIATION

A Schwarzschild black hole of mass M emits particles with
a blackbody spectrum at a temperature (Hawking 1975)

TBH =
~c3

8πkBGM
, (3)

where ~ is the reduced Planck constant, kB is the Boltzmann
constant, and G is the gravitational constant. This emission
produces a mass loss rate given by

∂M

∂t

∣∣∣∣
em

=
1

c2
ΣBHh∗σT

4
BH, (4)

where σ is the Stefan-Boltzmann constant, c is the speed of
light in vacuum, h∗ is the number of particle species available
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Figure 1. Most relevant constraints on the initial fraction of

the energy density of the universe in PBHs for monoenergetic

IMFs (adapted from Green 2015). We distinguish in colours the

different kind of constraints. The constraints derived from relic

particle studies are shown in blue, those related to evaporation

effects (e.g. gamma ray production) in green, those related to

gravitational effects (e.g. lensing or dynamical effects) in red, and

other constraints, as those related to neutron capture or gravi-

tational waves, in yellow. The coloured areas are the forbidden

regions of the parameter β = ρPBH/ρtot.

for the black hole to evaporate into, and ΣBH is the effective
area at which particles escape from the hole. Strictly speak-
ing, h∗ depends on the temperature and, consequently, on
the black hole mass; nevertheless, this dependency is discrete
and h∗ can be considered constant for fixed mass ranges.
Equation (4) can be written as

∂M

∂t

∣∣∣∣
em

= −A(M)

M2
, (5)

where A(M) = 5.3×1025 g3 s−1 for black holes with masses
> 1017 g and A(M) > 7.8× 1026 g3 s−1 for black holes with
masses 6 1015 g (MacGibbon & Carr 1991).

In addition to the Hawking emission, black holes im-
mersed in a thermal bath accrete particles at a rate given
by (Zel’dovich & Novikov 1966)

∂M

∂t

∣∣∣∣
acc

=
27πG2

c5
ρRM

2, (6)

where ρR is the energy density of radiation measured far
away from the hole. Combining the two effects we obtain
the complete equation for the mass variation rate:

dM

dt
=

27πG2

c5
ρRM

2 − 1

c2
ΣBHh∗σT

4
BH. (7)

4 COSMIC EVOLUTION

4.1 Two-fluid cosmology

We consider a cosmic fluid immersed in a FLRW space-time,
(Σ×R, gFLRW

µν ), where Σ is a set of space-like hypersurfaces
and gFLRW

µν is such that

ds2 = −dt2 +R(t)2
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)

]
. (8)

Here, R(t) is the scale factor of the metric and k is the curva-
ture parameter. We assume that the fluid is composed of two
perfect components, A and B; hence, its energy-momentum
tensor is

Tµν = Tµν(A) + Tµν(B), (9)

where

Tµν(i) =
1

c2
[
ρ(i) + p(i)

]
uµuν − p(i)gµν , (i = A,B), (10)

and ρ(i) and p(i) denote the energy density and the pres-
sure of the fluid-component i, respectively. We assume that
both components have the same four-velocity uµ but their
equation of state can be different:

p(i) = w(i)ρ(i), (i = A,B). (11)

If the two fluid-components interact, only the total
energy-momentum tensor is conserved. Thus,

∇µTµν = 0 =⇒ ∇µTµν(A) = −∇µTµν(B). (12)

We denote Q the rate of energy exchange caused by the
interaction, and we define the normalised scale factor a(t) =
R(t)/R(t0), where t0 is an arbitrary cosmic time (see Sec. 5
for the specific choice of this value). Then, by adding one of
the Friedmann equations to the only non-trivial component
of Eq. (12) we obtain a system of three differential equations
for ρ(A), ρ(B), and a:

ρ̇(A) + 3

(
ȧ

a

)[
1 + w(A)

]
ρ(A) = Q,

ρ̇(B) + 3

(
ȧ

a

)[
1 + w(B)

]
ρ(B) = −Q,(

ȧ

a

)2

− 8πG

3c2
[
ρ(A) + ρ(B)

]
+

c2k

[R(t0)a]2
= 0.

(13)

The interaction term Q depends on the specific characteris-
tics of the system. In what follows, we apply this two-fluid
formalism to a cosmological model of the early universe in
which the two fluids are radiation and a PBH gas.

4.2 Early universe with PBHs

Let us consider a relativistic thermal plasma characterised
by its equilibrium temperature TR, which sets the other rele-
vant thermodynamic quantities (energy density ρR, pressure
pR, and entropy density sR) through the following relations:

ρR = g∗
(kBTR)4

(~c)3
,

pR =
1

3
ρR = g∗

(kBTR)4

3(~c)3
,

sR =
ρR + pR
TR

=
4

3

g∗k
4
B

(~c)3
T 3
R.

(14)

Here g∗ takes into account the contribution of the different
species of relativistic particles.

Let us also consider a PBH component modelled as a
dust-like perfect fluid (pPBH = 0) whose constituents are
Schwarzschild black holes. These may have different masses
and therefore are characterised by their IMF, N0(m), which
evolves with time due to two processes: the expansion of

MNRAS 000, L1–L8 (0000)



4 E. M. Gutiérrez, F. L. Vieyro, and G. E. Romero

the universe and the energy exchange of each PBH with the
radiation. If N(t;m) denotes the mass function at time t,
the PBH energy density is

ρPBH(t) =

∫ Mmax

Mmin

N(t;m)E(m)dm, (15)

where Mmin and Mmax are the minimum and maximum
mass of the black holes, and E(m) = mc2 is the energy
of a Schwarzschild black hole of mass m. In a similar way,
the entropy density can be calculated as

sPBH(t) =

∫ Mmax

Mmin

N(t;m)S(m)dm, (16)

where S(m) = 4πkBGm
2/~c is the Bekenstein-Hawking en-

tropy of a Schwarzschild black hole of mass m.
In order to obtain an expression for the Q-term, we

must sum the effects of the interaction of each black hole
with the radiation. If the mass of a black hole evolves from
m at time t to m+ dm at time t+ dt, then

N(t;m) = N(t+ dt;m+ dm), (17)

and this implies

∂N(t;m)

∂t

∣∣∣∣
int

=
∂N(t;m)

∂m

dm

dt
, (18)

where the mass variation rate is given by Eq. (7). The Q-
term results

Q =
∂ρPBH

∂t

∣∣∣∣
int

=

∫ Mmax

Mmin

∂N(t;m)

∂t

∣∣∣∣
int

mc2dm

=

∫ Mmax

Mmin

∂N(t;m)

∂m

dm

dt
mc2dm.

(19)

Finally, we consider that the space-time has negligible cur-
vature (which is a very reasonable assumption in the early
universe) and we set k = 0. The system of equations (13)
becomes

ρ̇R + 4
ȧ

a
ρR = −

∫ Mmax

Mmin

∂N(t;m)

∂m

dm

dt
mc2dm,

ρ̇PBH + 3
ȧ

a
ρPBH =

∫ Mmax

Mmin

∂N(t;m)

∂m

dm

dt
mc2dm,(

ȧ

a

)2

=
8πG

3c2
(ρR + ρPBH) .

(20)

Now we have an integro-differential equation system for the
functions N(t;m), ρR(t), and a(t). In what follows, we sep-
arate our analysis into narrow IMFs and extended IMFs.

4.2.1 Narrow IMF

If a PBH population is formed on a short timescale, for ex-
ample from a phase-transition, the IMF is typically narrow
and centred on a particular mass (Barrow et al. 1992). We
study the simplest narrow IMF, namely a Dirac delta func-
tion. We assume that the PBHs form at time tform with a
mass Mform ∼MH(tform). Thus,

N0(m) ≡ Aδ(m−Mform), (21)

where A is a normalisation constant and can be related to

the original fraction of the energy density of the universe
that goes to PBHs. The initial energy and entropy densities
of the black holes are

ρPBH(t = tform) = AMformc
2, (22)

sPBH(t = tform) = AS(Mform). (23)

In this scenario, all black holes evolve in the same manner
and at each time t they have the same mass MPBH(t). There-
fore, we can determine the evolution of the whole population
by studying one representative PBH. Under this simplifica-
tion, the set of Eqs. (20) becomes

ρ̇R + 4
ȧ

a
ρR = −Ac2 dMPBH

dt
,

˙ρPBH + 3
ȧ

a
ρPBH = Ac2

dMPBH

dt
,(

ȧ

a

)
=

8πG

3c2
(ρR + ρPBH) ,

(24)

that is a system of linear differential equations for MPBH(t),
ρR(t), and a(t).

4.2.2 Extended IMF

In other scenarios, for example those where the formation
occurs on a long timescale, the IMF can be extended and
span a wide mass range (Barrow et al. 1991b). We analyse
the particular case of a power-law IMF of the form

N0(m) = Am−γ , (25)

where A is a normalisation constant and γ is the spectral
index, which typically lies in the range 2 − 3 (Carr et al.
2010).

Here, we assume that the formation starts at time tini
(the least massive black holes) and ends at time tend (the
most massive ones). The form of the mass function N(t;m)
varies with time owing to the different rates of evolution of
each PBH. In order to solve the equation system, we discre-
tise the function N(t;m) in blocks. Each block evolves as an
independent Dirac delta function like the one we previously
considered.

5 RESULTS

We set the initial values of the energy densities of both fluids
at time tini, and we normalise the scale factor such that
a(t0 = tini) = 1. For the initial radiation temperature, we
assume the following expression (e.g. Weinberg 1972):

TR(tini) ∼ 1010(tini/s)
−1/2 K. (26)

Then, we set

ρPBH(tini) := βρR(tini), (27)

where β < 1 is a free parameter of the model, though it
is limited by the constraints previously discussed. As the
number density of pre-inflation PBHs is negligible after the
inflationary epoch, we only consider post-inflationary times:
tini = 10−33 s.

In what follows, we present numerical results for some
examples of the two scenarios discussed in Sec. 4. We solved
the equation system (20) using an adapted fourth-order
Runge-Kutta method.

MNRAS 000, L1–L8 (0000)
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Figure 2. Evolution of a PBH of mass 105 g formed at a time

tini = 10−33 s

5.1 Monoenergetic IMF

Let us consider a monoenergetic PBH population of mass
Mini = 105 g ∼ MH(tini). Figure 2 shows the evolution of
one of these black holes. The only free parameter is the ratio
of energy densities β. In a first scenario, we do not take into
account the rather speculative ‘relic particle’ constraints.
Hence, there is no upper limit on β (for the chosen value
of the mass) and we set β = 10−3. Figure 3 shows the cos-
mic evolution for this scenario. At the beginning, radiation
dominates and the scale factor evolves as a(t) ∝ t1/2. As the
PBH component dilute slower than radiation, it starts to
dominate at some later time, and during a period the uni-
verse is PBH-dominated (dust-dominated) and a(t) ∝ t2/3.
All black holes evaporate on a timescale of about 10−10 s
yielding their energy to radiation, and the universe becomes
radiation-dominated again; however, the PBH population
produced an increase in the scale factor of about two orders
of magnitude.

The entropy in a comoving volume, s(t)a(t)3, also in-
creases during the whole evolution; this is driven by the
accretion at early times and by the evaporation at the end
of the evolution. The latter is the most significant process
and produces an increase in entropy by a factor ∼ 106.
This scenario is an example of an a priori plausible scenario
(provided that the ‘relic particle’ constraint does not apply)
which presents significant modifications compared with the
standard radiation-dominated evolution.

If we accept the relic constraints, the highest possible
value of β for the adopted mass is ∼ 10−15. This is a similar
case to the situation discussed, but with this new value of β
no modifications in the cosmic evolution are obtained, as it
is shown in Fig. 4.

5.2 Power-law IMF

Scenarios with a power-law IMF were studied by Barrow
et al. (1991b), who neglected the accretion and considered
that all PBHs formed simultaneously. We assume here that
a black hole of mass m cannot be formed until the horizon
mass exceeds m, and hence the formation must be extended
in time. There are three additional free-parameters besides
β: the minimum and maximum mass of the distribution,
Mmin y Mmax, and the spectral index γ.
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Figure 3. Cosmic evolution for a two-fluid model considering
radiation and a monoenergetic population of PBHs with mass

MPBH = 105 g, and β = 10−3. Top panel shows the scale fac-

tor evolution for this system (with interaction), for a radiation-

dominated universe (radiation), and for a universe in which black

holes do not evaporate and behave exactly like dust (without in-

teraction). Central panel shows the energy densities of both fluids,
and bottom panel shows the entropy per unit of comoving volume

of both fluids as well as the total one.

In order to investigate the general behaviour of power-
law IMFs, we first ignore the constraints. We choose Mmin =
6.5×102mP (mP ' 2.18×10−5 g is the Planck mass), which
corresponds to black holes with lifetimes of the order of the
initial time (tlife ∼ tini = 10−33 s), and Mmax = 106 M�,
corresponding to supermassive black holes. We study IMFs
with different values of γ in the range 2−3, and for different
values of β. In addition, as we may have large enough PBHs
for accretion to be important, we consider scenarios with and
without accretion. We fit the scale factor with power-laws:
a ∝ tr.
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Figure 4. Scale factor evolution of a two-fluid model considering

radiation and a population of PBHs with mass MPBH = 105 g,
and β = 10−15.

In agreement with Barrow et al. (1992), we find sce-
narios with intermediate evolution between those that are
radiation and dust-dominated (1/2 < r < 2/3). Signifi-
cant modifications in the cosmic evolution only occur for
γ near 2 (harder spectra) and for higher values of β. Figure
5 shows the results for the case γ = 2.1, β = 10−1. The
scale factor evolves as a power-law with r = 0.544 indepen-
dently of whether there is accretion or not. Furthermore,
despite accretion temporarily modifies the ratio of energy
densities, the dilution of the holes rapidly becomes domi-
nant and the two scenarios converge to the same stationary
value of β ∼ 0.47; accretion seems to be negligible even in the
most favourable scenario. Finally, the entropy in a comov-
ing volume increases during the whole evolution although
less than in one of the monoenergetic cases discussed above,
even though here β is two orders of magnitude higher.

A plausible power-law scenario must satisfy the obser-
vational constraints. Figure 6 shows how these constraints
apply for this type of distribution as a function of γ. We
can see that the harder the spectrum is, the lower the in-
fluence of the relic constraints results. The most favourable
scenarios are those with hard spectra; for them β ∼ 10−24

both neglecting and including the relic constraints. For these
cases, we obtain that PBHs do not cause any significant ef-
fect and the scale factor evolves as in a radiation-dominated
universe.

6 CONCLUSIONS AND FINAL REMARKS

We have studied the effects that different PBH populations
produce on the evolution of the early universe. We con-
sidered a two-fluid cosmological model with radiation and
a PBH gas. According to the different possible formation
mechanisms, the PBH IMF may be extended or narrow. We
have investigated representative cases for these two possi-
ble scenarios, namely power-law and monoenergetic IMFs.
To characterise the IMFs, we have taken into account the
different constraints that exist for PBH abundances. In par-
ticular, we have distinguished the ‘relic constraints’ from the
others, since they are too conjectural.

Monoenergetic populations of small PBHs produce sig-
nificant modifications in the cosmic evolution (changes in
the scale factor and generation of entropy) provided that
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Figure 5. Cosmic evolution for a power-law IMF with spectral
index γ = 2.1, and with masses lying between Mmin = 650mP

and Mmax = 106 M�, for a value of β = 10−1. Top panel shows

the scale factor evolution in four cases: with and without accre-
tion, in a radiation dominated universe, and in a universe with
radiation and PBHs but without any interaction between them.
Central panel shows the ratio of the fluid energy densities with
and without accretion. Bottom panel shows the entropy per unit
of comoving volume of both fluids as well as the total one.

the PBH energy density is high enough. The latter condi-
tion requires to discard the ‘relic constraints’. If instead we
take them as valid, no effects are produced.

The behaviour of power-law scenarios is different. We
discussed that the constraint treatment depends on the IMF
form. For the analysed cases, we found cosmic evolution
modifications only if we omit the constraints. In addition, we
investigated the importance of accretion in these scenarios
finding that it plays no significant role. Situations where all
constraints are satisfied do not present any relevant effect.

We conclude that the presence of some particular PBH
populations in the early universe may affect the cosmic evo-
lution. In particular, populations of small PBHs with narrow
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Figure 6. Combined constraints on the initial fraction of the

energy density of the universe in PBHs for power-law IMFs, as a
function of the spectral index γ. The minimum mass is Mmin =

650mP. The red line is plotted discarding the relic constraints

whereas the blue dashed-line considers them. The hatched areas
are the forbidden regions of the parameter β. In the Appendix A

we show a more general case.

IMFs are likely to produce these effects. These populations
are possible if the relic constraints are not valid. In addi-
tion, we found that accretion on to PBHs is not a relevant
energy-exchange mechanism in the early universe, even for
the most favourable IMFs.

APPENDIX A: PBH CONSTRAINTS ON
EXTENDED MASS FUNCTIONS

Let us consider a PBH population with mass function
N(m;α), where α = {αi} are the parameters that char-
acterise the function, and let us define

φ(m;α) := ρ−1
totN(m;α)mc2, (A1)

where ρtot is the total energy density of the universe and
c is the speed of light in vacuum. If O[φ(m;α)] denotes an
observable depending on the PBH mass function, we can
expand it as

O[φ(m;α)] = O0 +

∫
dmφ(m;α)K1(m)+∫

dm1dm2φ(m1;α)φ(m2;α)K2(m1,m2) + ...,

(A2)

where O0 is the background contribution and the functions
Kj(m) depend on the details of the underlying physics and
the nature of the observation. As we considered that PBHs
do not interact among themselves, only the first two terms
in the right-hand side of Eq. (A2) need to be considered.

If a measurement imposes an upper bound on the ob-
servable,

O[φ(m;α)] 6 Oexp, (A3)

for a monoenergetic mass function with m = M∗,

φmon(M∗) ≡ ρ−1
totAδ(m−M∗)mc2, (A4)

we have

ρ−1
totAM∗c

2 6
Oexp −O0

K1(M∗)
≡ β(M∗), (A5)

where β(M∗) is the upper bound for monoenergetic distribu-
tions (see Fig. 1). Combining Eqs. (A2) and (A5) we obtain
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Figure A1. Combined effect of the constraints on the initial frac-

tion of the energy density of the universe in PBHs for power-law
IMFs, as a function of the parameters Mc = Mmine

1/(γ−2) and

σ ≡ 1/(γ−2). The colour map shows log(βmax). The dotted-lines

are contour lines of βmax (i.e., βmax = const.) and the regions
in black are forbidden combinations of the parameters. The left
panel is plotted discarding the relic constraints whereas in the
right panel these are considered.

∫
dm

φ(m;α)

β(m)
6 1, (A6)

for an arbitrary mass function. If we know β(m) and as-
sume the form of the function φ(m;α), we can integrate Eq.
(A6) over the mass range (m1,m2) for which the constraint
applies. For given values of the parameters α, this imposes
limits on β ≡ ρPBH/ρtot. In particular, for a power-law mass
function we have

φ(m;Mmin, γ) = Am1−γc2, with m >Mmin. (A7)

If γ > 2, a minimum mass is strictly necessary for the func-
tion not to diverge. Instead, the role of the maximum mass
is not important in this case. Then, for each set of param-
eters {γ,Mmin} the combined effect of Eq. (A6) applied to
the different constraints impose limits on A, and hence on
β. It is standard to plot the constraints as a function of the
parameters Mc ≡ Mmine

1/(γ−2) and σ ≡ 1/(γ − 2) instead
of the original ones (see Fig. A1).

The procedure discussed in this Appendix is an adap-
tation of the one presented by Carr et al. (2017).
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