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We investigate gauge invariant scalar fluctuations of the metric during inflation in a nonperturbative
formalism in the framework of a recently formulated scalar-tensor theory of gravity, in which the geometry
of space-time is that of a Weyl integrable manifold. We show that in this scenario the Weyl scalar field can
play the role of the inflaton field. As an application of the theory, we examine the case of a power-law
inflation. In this case, the quasi-scale invariance of the spectrum for scalar fluctuations of the metric is
achieved for determined values of the parameter ω of the scalar-tensor theory. We stress the fact that in our
formalism the physical inflaton field has a purely geometrical origin.
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I. INTRODUCTION

The existence of an inflationary stage [1–4] of the early
Universe is now supported by much observational evi-
dence, in particular, by the discovery of temperature
anisotropies present in the cosmic microwave background
[5,6]. In fact, in recent years, there has been an extraor-
dinary development on observational tests of inflationary
models [7]. On the theoretical side, among the most popular
and pioneering models of inflation, we would like to
mention the supercooled chaotic inflation model [8]. In
this proposal, as we know, the expansion of the Universe is
driven by a scalar field known as the inflaton field.
In the current state of affairs, one would say that an

inflationary model is considered viable when, among other
features, it provides a mechanism for the creation of
primordial density fluctuations, needed to explain the
subsequent structure formation in the Universe [9–11].
According to some authors, fluctuations of the inflaton
field induce scalar fluctuations of the metric around a
Friedmann-Robertson-Walker (FRW) geometrical back-
ground. On the other hand, scalar fluctuations of the metric
on cosmological scales can be studied in a nonperturbative
formalism, describing not only small fluctuations but the
larger ones [12]. In this kind of model, it is assumed that the
inflaton field exists at the beginning of the inflationary

stage [13]. In view of this, it seems rather appealing, and
perhaps closer to the spirit of general relativity, to look for a
model that explains the origin of the inflaton scalar field at a
purely geometrical level.
We all know that in the so-called scalar-tensor theories of

gravity, in addition to the space-time metric, a scalar field is
required to describe gravity. Historically, an early motiva-
tion for this new degree of freedom came from the attempt
to incorporate Mach’s principle in a relativistic theory of
gravity [14,15]. Later, new classes of scalar-tensor theories
of which the main motivation has a geometric character
have appeared [16]. Among these, there has been an
increasing interest in gravitational theories defined in a
Weyl integrable space-time geometry [17]. These may be
regarded as scalar-tensor theories in which the scalar field
plays a clear geometric role.1 In the present paper, we shall
consider a more recent geometrical approach to scalar-
tensor theory [20]. This approach starts by considering the
action of Brans-Dicke theory and introduces the space-time
geometry from first principles, which is done by applying
the Palatini formalism. Cosmological models in this new
geometrical scalar-tensor theory have been studied, and
cosmological scenarios have been found, which seems to
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1Incidentally, it should be noted that general relativity can also
be formulated in the language of Weyl-integrable space-time [18].
In cosmology, it was shown that this new formulation of general
relativity in terms of the Weyl-integrable geometry admits
solutions capable of explaining the present accelerating expan-
sion of the Universe, as a natural consequence of the existence of
the Weyl scalar field [19].
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indicate the presence of a geometric phase transition of the
Universe [21].
In this paper, we consider gauge invariant scalar

fluctuations of the metric during inflation, employing a
nonperturbative formalism in the context of the Weyl
scalar-tensor theory of gravity. Here, the physical inflaton
field has a geometrical origin since it is part of the affine
structure of the space-time manifold. As an application of
this idea, we study a scenario in which the early Universe
underwent an expansion phase given by power-law infla-
tion. Our approach is different than one worked earlier [12],
in which the inflaton field has a physical origin. In this
work, we demonstrate that the expansion of the Universe
can be driven by a geometrical field (in a Weyl frame),
which can be interpreted as the inflaton field when we use
the Einstein frame. The paper is organized as follows. In
Sec. II, we present the general formalism that leads to Weyl
geometrical scalar-tensor theory. We proceed to Sec. III,
where we work out the formalism of gauge invariant scalar
fluctuations of our model in a nonperturbative way. The
particular case of the dynamical equations for the small
scalar fluctuations of the metric are studied using the
linearized case. The power spectrum and the mean square
scalar fluctuations of the metric in a more general way are
calculated at the end of this section. In Sec. IV, we present
the example in which the Universe describes a power-law
inflationary expansion. Finally, in Sec. V, we conclude with
some comments.

II. FORMALISM

To begin with, let us now consider a scalar-tensor theory
of gravity of which the action is given by

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ΦRþ ~ωðΦÞ

Φ
gμνΦ;μΦ;ν − ~VðΦÞ

�
;

ð1Þ

where R denotes the Ricci scalar, ~ωðΦÞ is a function of the
scalar field, and ~VðΦÞ is a scalar potential.
It is easy to see that, in terms of the new variable

ϕ ¼ − lnðGΦÞ, the action (1) can be rewritten as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
e−ϕ

�
R

16πG
þ ωðϕÞgμνϕ;μϕ;ν

�
− VðϕÞ

�
;

ð2Þ

where we have defined ωðϕÞ ¼ ð16πGÞ−1 ~ω½ΦðϕÞ� and
VðϕÞ ¼ ~VðΦðϕÞÞ. Adopting the Palatini procedure, it
can be shown that the variation of the action (2) with
respect to the affine connection yields [20]

∇αgμν ¼ ϕ;αgμν; ð3Þ

which corresponds to the nonmetricity condition character-
izing a Weyl-integrable space-time, where ϕ is interpreted
as the Weyl scalar field. We thus see that if we adopt the
Palatini variational principle we are naturally led to
the geometry of the Weyl-integral space-time. To get
the complete set of field equations, we next perform the
variation of the action (2) with respect to the metric gαβ and
the scalar field ϕ, which then gives

Gμν ¼ 8πG

�
ωðϕÞ

�
1

2
gμνϕ;αϕ

;α − ϕ;μϕ;ν

�
−
1

2
eϕgμνVðϕÞ

�
;

ð4Þ

□ϕ ¼ −
�
1þ 1

2ωðϕÞ
dωðϕÞ
dϕ

�
ϕ;μϕ

;μ −
eϕ

ωðϕÞ
�
1

2

dV
dϕ

þ V

�
;

ð5Þ

where Gμν ¼ Rμν − ð1=2ÞRgμν is calculated in terms of the
affine connection Γα

μν, given by

Γα
μν ¼

�
α

μν

�
−
1

2
gαβ½gβμϕ;ν þ gβνϕ;μ − gμνϕ;β�; ð6Þ

n α
μν

o
¼ ð1=2Þgαβðgβμ;ν þ gβν;μ − gμν;βÞ denoting the Levi-

Civitá connection.
An important fact to be noted here is that the non-

metricity condition (3) is invariant under the Weyl trans-
formations

ḡμν ¼ efgμν; ð7Þ

ϕ̄ ¼ ϕþ f; ð8Þ

where f is an arbitrary scalar function of the coordinates.
It is usually said in the literature that the transformations
(7)–(8) lead from one frame ðM; g;ϕÞ to another frame
ðM; ḡ; ϕ̄Þ. For the particular choice f ¼ −ϕ, we have ḡμν ¼
e−ϕgμν and ϕ̄ ¼ 0, and in this case, the condition (3)
reduces to the Riemannian metricity condition. Due to this
fact the frame ðM̄; ḡ; ϕ̄ ¼ 0Þwill be referred as the Einstein
frame. However, the terminology “Einstein frame” used
ihere is different from that traditionally employed in
Jordan-Brans-Dicke (JBD) scalar-tensor theories. This is
because in the JBD theories the frame transformations do
not preserve the compatibility of the metric and the affine
connection, generating geodesics in the traditional Einstein
frame with an extra acceleration term. Here, the Riemann or
Einstein frame is a geometric object constructed as a result
of the invariance under Weyl transformations of the non-
metricity condition (3), and thus the geodesics are pre-
served in all Weyl frames, including what this paper calls
the Einstein frame, which is defined by means of the
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effective metric ḡμν. Now, it is not difficult to verify that in
the Einstein frame the action (2) takes the form

SðRÞ ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
R̄

16πG
þ ωðϕÞḡμνϕ;μϕ;ν − e2ϕVðϕÞ

�
;

ð9Þ

with R̄ denoting the transformed Riemannian Ricci scalar.
The field equations derived from the action (9) will be
given by

Gμν ¼ 8πG

�
ωðϕÞ

�
1

2
ϕ;αϕ

;αḡμν − ϕ;μϕ;ν

�
−
e2ϕ

2
ḡμνVðϕÞ

�
;

ð10Þ

□ϕ ¼ −
1

2ω

dω
dϕ

ϕ;αϕ
;α −

e2ϕ

ω

�
V þ 1

2

dV
dϕ

�
; ð11Þ

where Gμν and □ denote the Einstein tensor and the
D’Alembertian operator, respectively, both calculated with
the affine connection in the Einstein frame.2

To study scalar fluctuations of the metric during infla-
tion, we shall consider the simplest scalar-tensor theory
derived from Eqs. (10) and (11). This is achieved when we
choose the parameter ωðϕÞ to be a constant. In this case, the
field equations (10)–(11) reduce to

Ḡμν ¼ 8πG

�
ω

�
1

2
ϕ;αϕ

;αḡμν − ϕ;μϕ;ν

�
−
e2ϕ

2
ḡμνVðϕÞ

�
;

ð12Þ

□̄ϕ ¼ −
e2ϕ

ω

�
V þ 1

2

dV
dϕ

�
: ð13Þ

One interesting feature of this framework is that, in
contrast to what happens in a general Weyl frame, in
the Einstein frame the scalar field ϕ is no longer a
geometric field and should be regarded as a physical
field. In this way, we shall consider ϕ in (12) and (13)the
inflaton field, the scalar field that drives the expansion of
the Universe during inflation. From this point of view, the
term between brackets in the right side of Eq. (12) can be
interpreted as an induced energy-momentum tensor in the
Einstein frame,

T̄μν ¼ ω

�
1

2
ϕ;αϕ

;αḡμν − ϕ;μϕ;ν

�
−
e2ϕ

2
ḡμνVðϕÞ: ð14Þ

For convenience, we shall work in the Einstein frame,
although the results hold in a general frame.3

III. NONPERTURBATIVE GAUGE INVARIANT
SCALAR FLUCTUATIONS OF THE METRIC

To study gauge invariant scalar fluctuations of the metric,
let us just by generality start by following the nonpertur-
bative formalism introduced in Ref. [12]. Thus, the per-
turbed line element can be written in the form

ds2 ¼ e2ψdt2 − a2ðtÞe−2ψ ðdx2 þ dy2 þ dz2Þ; ð15Þ

where aðtÞ is the cosmological scale factor and ψðt; x; y; zÞ
is a metric function describing gauge invariant scalar
fluctuations of the metric in a nonperturbative way. The
Ricci scalar calculated with the metric in (15) is given by

R̄ ¼ 6e−2ψ
�
ä
a
þH2 − ψ̈ − 5H _ψ þ 3 _ψ2

þ e4ψ

3a2
ð∇2ψ − ð∇ψÞ2Þ

�
; ð16Þ

with H ¼ _a=a denoting the Hubble parameter. In the
absence of matter, the perturbed field equations (12)
reduce to

e−2ψð3H2 − 6H _ψ þ 3 _ψ2Þ þ 1

a2
½2∇2ψ − ð∇ψÞ2�e2ψ

¼ 8πG

�
ω

2

�
e−2ψ _ϕ2 þ e2ψ

a2
ð∇ϕÞ2

�
þ 1

2
e2ϕVðϕÞ

�
;

ð17Þ
�
−2ψ̈ þ 5 _ψ2 − 8H _ψ þ 2ä

a
þH2

�
e−2ψ −

1

3a2
ð∇ψÞ2e2ψ

¼ 8πG

�
−
ω

2

�
e−2ψ _ϕ2 −

1

3a2
e2ψð∇ϕÞ2

�
þ 1

2
e2ϕVðϕÞ

�
;

ð18Þ

1

a
∂
∂xi

� ∂
∂t ðaψÞ

�
−
∂ψ
∂t

∂ψ
∂xi ¼ 8πG

ω

2

∂ϕ
∂t

∂ϕ
∂xi ; ð19Þ

∂ψ
∂xi

∂ψ
∂xj ¼ −8πG

ω

2

∂ϕ
∂xi

∂ϕ
∂xj ; ð20Þ

while the dynamics of the inflaton field ϕ is given by

2Here, the energy momentum-tensor Tμν is defined according
the prescription adopted in Ref. [20].

3It is important to note that in Weyl geometrical scalar-tensor
theory all geometrical objects, such as geodesics, curvature, and
length of a curve, are constructed in an invariant way with respect
to Weyl transformations. This is done with the help of the
“effective” metric γμν ¼ e−ϕgμν, which is a fundamental invariant
of the equivalence class of Weyl manifolds. It turns out that in the
Einstein frame γμν ¼ ḡμν. See, for instance, Ref. [20].
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ϕ̈þ ð3H − 4 _ψÞ _ϕ −
e4ψ

a2
∇2ϕ

þ 1

ω
e2ðψþϕÞ

�
VðϕÞ þ 1

2
V 0ðϕÞ

�
¼ 0; ð21Þ

where the prime mark denotes a derivative with respect to
ϕ. It is not difficult to verify that after some algebraic
manipulations Eqs. (17) and (18) yield

ðψ̈ − 4 _ψ2 þ 7H _ψÞe−2ψ þ 2

3a2
ð∇ψÞ2e2ψ −

1

a2
ð∇2ψÞe2ψ

¼ 8πG

�
−

ω

3a2
e2ψð∇ϕÞ2 − 1

2
e2ϕVðϕÞ

�
; ð22Þ

where we have eliminated background contributions. This
equation determines the dynamics of ψ , the function that
describes the scalar fluctuations of the metric with arbitrary
amplitude.4

A. Linear approximation

In general, finding solutions for the dynamics of ψ from
Eq. (22) is not an easy task. However, we can obtain some
solutions in the weak field limit, i.e., solutions correspond-
ing to small amplitudes of the scalar fluctuations. In this
limit, a linear approximation of the scalar fluctuations of
the metric is useful, and the gauge invariance is preserved.
To implement this limit, we use e�nψðxσÞ ≃ 1� nψðxσÞ. In
this regime, a semiclassical approximation for the inflaton
field is also valid. Thus, we write ϕðt; xiÞ ¼ ϕbðtÞþ
δϕðt; xiÞ, where the background classical field ϕb ¼
hEjϕjEi is the expectation value of ϕ, with jEi denoting
a physical quantum state given by the Bunch-Davies
vacuum [22], and δϕ describes the quantum fluctuations
of the field ϕ. The line element (15) in the weak field limit
becomes

ds2 ¼ ð1þ 2ψÞdt2 − a2ðtÞð1 − 2ψÞðdx2 þ dy2 þ dz2Þ:
ð23Þ

Here, the metric ḡð0Þμν ¼ diag½1;−a2ðtÞ;−a2ðtÞ;−a2ðtÞ�
describes the background metric in the Einstein frame,
which is supposed to be isotropic and homogenous. Notice
that the linear approximation (23) agrees with the longi-
tudinal gauge in the standard approach to perturbation
theory [23,24]. The linearization of Eq. (22) leads to

ψ̈ þ 7H _ψ −
1

a2
∇2ψ ¼ −4πGe2ϕbV 0ðϕbÞδϕ: ð24Þ

From Eqs. (19) and (20), Eq. (24) can be put in the form

ψ̈ þ αðtÞ _ψ −
1

a2
∇2ψ þ βðtÞψ ¼ 0; ð25Þ

where

αðtÞ ¼ 7H þ e2ϕb

ω _ϕb

V 0ðϕbÞ; ð26Þ

βðtÞ ¼ e2ϕb

ω

�
VðϕbÞ þ

V0ðϕbÞ
_ϕb

H

�
: ð27Þ

On the other hand, with respect to the background part (i.e.,
on cosmological scales), the linearization of Eq. (21) gives

ϕ̈b þ 3Hc
_ϕb þ

e2ϕb

ω

�
VðϕbÞ þ

1

2
V 0ðϕbÞ

�
¼ 0; ð28Þ

whereas, on small quantum scales, the dynamics of δϕ and
ψ is given by

δ̈ϕþ 3Hc
_δϕ −

1

a2
∇2δϕþ e2ϕb

ω

�
V 0ðϕbÞ þ

1

2
V 00ðϕbÞ

�
δϕ

¼ 4 _ϕb _ψ −
2e2ϕb

ω

�
VðϕbÞ þ

1

2
V 0ðϕbÞ

�
ψ : ð29Þ

At the same time, the Friedmann equation for the back-
ground metric is

3H2
c ¼ 4πG½ω _ϕ2

b þ e2ϕbVðϕbÞ�: ð30Þ
Finally, from Eqs. (28) and (30), we find that the back-
ground inflaton field satisfies the equation

_ϕ2
b ¼ −

_Hc

4πGω
: ð31Þ

Now, in order to study the quantum dynamics of the
inflaton field ϕ and of the scalar fluctuations of the metric
ψ , we shall follow the canonical quantization procedure.

B. Quantization and spectrum for scalar
fluctuations of the metric

Following the canonical quantization procedure of
quantum field theory, we start by imposing the commuta-
tion relation

½ψðx̄Þ;Π0
ðψÞðt; x̄0Þ� ¼ iδð3Þðx̄ − x̄0Þ; ð32Þ

where the quantity Π0
ðψÞ ¼ ∂L=∂ _ψ is the canonical con-

jugate momentum to ψ and L is the Lagrangian. The equal
times quantization condition (32) implies that

4We would like to point out that the nonperturbative method
adopted here is an extension of the standard approach. The main
difference lies in the fact that in the nonperturbative approach
cosmological curvature fluctuations of the metric with large
amplitude can be also treated, whereas in the standard approach,
the fluctuations must be small compared to the metric back-
ground. A more complete description of the nonperturbative
method can be found in Ref. [7].
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½ψðt; x̄Þ; _ψðt; x̄0Þ� ¼ i
t0
e−

R
αðtÞdtδð3Þð~x − ~x0Þ: ð33Þ

According to the action (9), now L takes the form

L ¼ ffiffiffiffiffiffi
−ḡ

p �
R̄

8πG
− ωḡμνϕ;μϕ;ν − e2ϕVðϕÞ

�
; ð34Þ

where R̄ is given by the expression (16).
To simplify the structure of Eq. (25), we can introduce

the auxiliary field

ψðx̄; tÞ ¼ e−
1
2

R
αðtÞdtχðx̄; tÞ ð35Þ

so that Eq. (25) can be written in terms of χ

χ̈ −
1

a2
∇2χ þ

�
β −

�
α2

4
þ _α

2

��
χ ¼ 0: ð36Þ

The auxiliary field χðx̄; tÞ can be expanded in Fourier
modes as

χðx̄; tÞ ¼ 1

ð2πÞ3=2
Z

d3k½akeik̄·x̄ξkðtÞ þ a†ke
−ik̄·x̄ξ�kðtÞ� ð37Þ

with the asterisk mark denoting a complex conjugate and a†k
and ak denoting the creation and annihilation operators,
which satisfy the commutation relations

½ak; a†k0 � ¼ δð3Þð~k − ~k0Þ; ½ak; ak0 � ¼ ½a†k; a†k0 � ¼ 0: ð38Þ

From Eq. (37), we can see that Eq. (36) leads to

̈ξk þ
�
k2

a2
−
�
α2

4
þ _α

2
− β

��
ξk ¼ 0; ð39Þ

which determines the dynamics of the quantum modes ξk
for the scalar fluctuations of the metric. The squared
quantum fluctuations of ψ in the IR sector (cosmological
scales) are given by the expression

hψ2iIR ¼ e−
R

αðtÞdt

2π2

Z
ϵkH

0

dk
k
k3½ξkðtÞξ�kðtÞ�jIR; ð40Þ

where ϵ ¼ kIRmax=kp ≪ 1 is a dimensionless parameter,
kIRmax ¼ kHðtrÞ being the wave number related to the
Hubble radius at time tr, when the modes reenter the
horizon, while kp is the Planckian wave number. For
the Hubble parameter H ¼ 0.5 × 10−9Mp, the values of
ϵ range between 10−5 and 10−8, and this corresponds to a
number of e-foldings at the end of inflation Ne ¼ 63.

IV. EXAMPLE: A POWER-LAW INFLATION

As an application of the ideas developed previously, we
now obtain the spectrum of squared scalar quantum
fluctuations of the metric ψ in the framework of the
Weyl geometric scalar-tensor theory in the case of a
power-law inflationary expansion of the Universe.
Considering the power-law expansion aðtÞ ¼ a0ðt=t0Þp,

Eq. (31) leads to the classical solution

ϕbðtÞ ¼ ϕ0

�
1þ n0 ln

�
t
te

��
; ð41Þ

where ϕ0 ¼ ϕbðt0Þ, t0 being the time when inflation starts.
For the potential, if we substitute Eq. (31) in Eq. (30), we
then get

e2ϕb=ϕ0VðtÞ ¼ 3H2
c þ _Hc

4πG
; ð42Þ

which, for Hc ¼ p=t, reduces to

VðtÞ ¼ 1

4πG
pð3p − 1Þ

t−2n0e
t−2ð1þn0Þ; ð43Þ

where

n0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð4πGϕ2

0ωÞ
q

ð44Þ

is a negative dimensionless parameter. Taking into account
Eqs. (26) and (27), the expression (39) can be written in the
form

̈ξk þ
�
κ2

t2p
−
γ20
t2

�
ξk ¼ 0; ð45Þ

with γ20 ¼ α20=4 − α0=2 − β0 and κ2 ¼ ðk2t2p0 Þ=a20. The
parameters α0 and β0 are given by

α0 ¼ 7p −
2pð3p − 1Þð1þ n0Þ

4πGωn20
;

β0 ¼
pð3p − 1Þ
4πGω

�
1 −

2ð1þ n0Þ
n20

e2ϕ0

�
: ð46Þ

The general solution of Eq. (45) reads

ξkðtÞ ¼ A1

ffiffi
t

p
Hð1Þ

ν ½ZðtÞ� þ A2

ffiffi
t

p
Hð2Þ

ν ½ZðtÞ�; ð47Þ

with ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ20 þ 1

p
=ð2p − 2Þ, ZðtÞ ¼ κt1−p=ðp − 1Þ, and

A1 and A2 being integration constants. The functionsH
ð1;2Þ
ν

denote the first and second kinds Hankel functions,
respectively. The expression (33) in terms of the χ field
becomes
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½χðx̄; tÞ; _χðx̄0; tÞ� ¼ i
t0
δð3Þðx̄ − x̄0Þ; ð48Þ

and thus the normalization condition for the modes will be
given by

_ξ�kξk − ξ�k _ξk ¼
i
t0
: ð49Þ

From Eq. (49) and by choosing the Bunch-Davies con-
dition, the normalized solution for the modes ξk is

ξkðtÞ ¼ i
ffiffiffiffiffiffi
π

4t0

r �
1

p − 1

�1−p
2 ffiffi

t
p

Hð2Þ
ν ½ZðtÞ�: ð50Þ

The mean square fluctuations for ψ on the IR sector
according to Eq. (40) are then given by

hψ2iIR ¼ ð−2a0Þ2ν
8π3

Γ2ðνÞ
ðp − 1Þ1−p−2ν

t1−2νð1−pÞ−α0

t1−2pð3þνÞ
0

×
ϵ3−2ν

3 − 2ν
β20t

2ðp−1Þð3−2νÞ
r ; ð51Þ

where we have used that kH ¼ ðγ20=t2p0 Þt2ðp−1Þr . The corre-
sponding power spectrum for ψ has the form

PkðψÞ ¼
ð−2a0Þ2ν

8π3ð3 − 2νÞ
Γ2ðνÞ

ðp − 1Þ1−p−2ν
t1−2νð1−pÞ−α0

t1þ2νp k3−2ν:

ð52Þ

We then see that the quasi-scale invariance for the spectrum
of scalar fluctuations of the metric PkðψÞ is achieved for
the values of P=ρ≳ −1. The spectral index is given by
ns − 1 ¼ 3 − 2ν, so that once ns is known, we can
determine the parameter p of the power-law expansion
of the Universe, which then will be given by

p ¼ 1þ 2

1 − ns
: ð53Þ

For ns ≃ 0.96 [25], we obtain p≃ 51. For this spectral
index, the equation of state P ¼ −ð 2 _H

3H2 þ 1Þρ will lead to

P=ρ ¼ 2 − 3p
3p

≃ −0.9869; ð54Þ

where P is the pressure and ρ is the energy density. This is
in good agreement with the data obtained by the WMAP9-
ωCDMðflatÞ observations [26]. This is very interesting

because, since P=ρ ¼ − p2

4πGϕ2
0

, for n0 ¼ −1 we obtain from

Eq. (41) that ϕ0 is

ϕ0 ≃ 3.57ffiffiffiffiffiffi
πω

p G−1=2; ð55Þ

where we have taken into account the value p ¼ 51.
Hence, this means that ϕ0 takes sub-Planckian values for
ω > 4.06, which solves the problem of the trans-Planckian
values in models of standard inflation. Furthermore, the
choice n0 ¼ −1 corresponds to a constant VðtÞ and
γ20 ¼ −β0 ¼ pð1−3pÞ

4πGω . With this choice for n0, and taking
into account the expression (42), it is possible to set
the following correspondence with standard models of
inflation:

VðϕbÞ ¼ 2VðtÞe2ϕb=ϕ0 : ð56Þ

In other words, the effective potential VðϕbÞ can be
interpreted potential in standard models of inflation for
n0 ¼ −1. This is very interesting because now it is possible
to define the slow-roll parameters of inflation evaluated at
k ¼ aH: ϵ ¼ 1

16πG ðV
0

V Þ2, η ¼ 1
8πG

V 00
V . In our case, we obtain

that

2ϵ ¼ η ¼ 1

2πGϕ2
0

¼ 0.03887: ð57Þ

With this value, one can automatically calculate the scalar
and tensor spectral indices: ns ¼ 1 − 6ϵþ 2η ¼ 1 − η ¼
0.9612, nt ≃ −2ϵ ¼ −η ¼ −0.0387. Hence, it follows
immediately that the scalar to tensor index r is given by:
r ¼ nt=ns ¼ −η=ð1 − ηÞ ¼ −0.04. This value is in agree-
ment with observations [25].

V. FINAL COMMENTS

In this paper, we have considered gauge invariant scalar
fluctuations of the cosmological metric during the infla-
tionary phase of the Universe in the framework of the Weyl
geometrical scalar-tensor theory of gravity and using a
nonperturbative formalism. By investigating the limit of the
field equations in the case of small perturbations, we have
obtained the spectrum of scalar fluctuations at the end of
inflation. An important feature of this model is that the
inflaton field is modeled by a geometrical scalar field,
which is part of the affine structure of the background
geometry. As far as inflationary models are concerned, it is
perhaps tempting to take the view that a geometrical
origin of the inflaton might be regarded as more natural
than its introduction a priori without a clear theoretical
justification.
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