9 research outputs found

    Análisis de imágenes 2D para la optimización de endoprótesis con carburo de silicio biomórfico

    Get PDF
    En el presente trabajo se muestra un análisis de diferentes estructuras óseas que se obtuvieron por imágenes de tomografías en dos dimensiones o “planas”, de las cuales se reconstruyen para obtener una visualización para el diagnóstico médico y el desarrollo de endoprótesis con materiales biocompatibles

    Percentile Study of chi Distribution. Application to Response Time Data.

    Get PDF
    As a continuation of our previous work, where a Maxwell-Boltzmann distribution was found to model a collective's reaction times, in this work we will carry out a percentile study of the χ distribution for some freedom ranging from k = 2 to k = 10. The most commonly used percentiles in the biomedical and behavioral sciences have been included in the analysis. We seek to provide a look-up table with percentile ratios, taken symmetrically about the median, such that this distribution can be identified in practice in an easy way. We have proven that these ratios do not depend upon the variance chosen for the k generating Gaussians. In general, the χ probability density, generalized to take any value of the variance, represents an ideal gas in a k-dimensional space. We also derive an approximate expression for the median of the generalized χ distribution. In the second part of the results, we will focus on the practical case of k = 3, which represents the ideal gas in physics, and models quite well the reaction times of a human collective. Accurately, we will perform a more detailed scrutiny of the percentiles for the reaction time distribution of a sample of 50 school-aged children (7200 reaction times)

    Measurement of the refractive index by using a rectangular cell with a fs-laser engraved diffraction grating inner wall

    Get PDF
    A very simple method to obtain the refractive index of liquids by using a rectangular glass cell and a diffraction grating engraved by fs laser ablation on the inner face of one of the walls of the cell is presented. When a laser beam impinges normally on the diffraction grating, the diffraction orders are deviated when they pass through the cell filled with the liquid to be measured. By measuring the deviation of the diffraction orders, we can determine the refractive index of the liquid

    >

    No full text
    We propose a new structure for an integrated variable optical attenuator using InGaAsP multiple quantum wells. The principle of operation relies on the self-imaging properties of multimode interference (MMI) waveguides. The device consists of a MMI region that is 12 μm wide by 350 μm long, with input and output waveguides that are 2 μm wide. The dimensions of the MMI are calculated such that an image of the input field is produced at the output waveguide. The last statement is true as long as the phase relation between the modes in the MMI section is kept constant. Therefore, by selectively perturbing the refractive index within the MMI section, the phase relation of the modes is altered, thereby modifying the interference properties at the output of the device. We present numerical simulations using the Finite-Difference Beam Propagation Method (FD-BPM), and demonstrate that optical attenuation is possible by selectively modulating the refractive index of a narrow region within the MMI section. A dynamic range of -37 dB can be easily obtained at a wavelength of 1.55 μm with a device insertion loss of 0.3 dB. The effects of electro-absorption on the device performance are also investigated

    Superfluorescence three-level neodymium-doped fiber source

    No full text
    We report on a new type of cladding-pumped neodymium-doped fiber which enables strong ASE emission at the wavelength region of 940 nm with a highly reduced emission in the four-level transition at 1060 nm when is pumped by an 806 nm source. This ASE source delivers a total emission power of 60 mW from 500 mW of absorbed pump power. The arrangement setup consisted in a pump diode emitting at 806 nm with a total output power of 1.5 W, a collimated and focused lenses and a dichroic mirror. The broadband of the neodymium source was measured to be 25 nm. Moreover, a numerical simulation for the ASE source is also discussed

    >

    No full text
    An analysis of out-coupling in a laser shows an optimum way of subtracting more output power by choosing an appropriate cavity arrangement from a high-power fiber laser. This investigation consisted in resolving analytically the effect of different cavities in our laser system and one thing that outcome was to know that a fiber laser can operate with high efficiency even with high losses in one end of the cavity (e.g. at an external diffraction grating), only if the feedback in the out-coupling end is low. Moreover, it was also found that is possible to improve the output power by reducing the feedback in the out-coupling end. Parameters considered in this resolved method are 0.1 NA, 10 μm diameter core, 200 μm inner-cladding diameter and 10 dB small-signal absorption. The fiber laser was doped with ytterbium and lases at 1080 nm, when pumped at 915 nm. The maximum pump power was set to 10 W
    corecore