1,010 research outputs found

    A Comprehensive Assessment of the Effects of Bt Cotton on Coleomegilla maculata Demonstrates No Detrimental Effects by Cry1Ac and Cry2Ab

    Get PDF
    The ladybird beetle, Coleomegilla maculata (DeGeer), is a common and abundant predator in many cropping systems. Its larvae and adults are predaceous, feeding on aphids, thrips, lepidopteran larvae and plant tissues, such as pollen. Therefore, this species is exposed to insecticidal proteins expressed in insect-resistant, genetically engineered cotton expressing Cry proteins derived from Bacillus thuringiensis (Bt). A tritrophic bioassay was conduced to evaluate the potential impact of Cry2Ab- and Cry1Ac-expressing cotton on fitness parameters of C. maculata using Bt-susceptible and -resistant larvae of Trichoplusia ni as prey. Coleomegilla maculata survival, development time, adult weight and fecundity were not different when they were fed with resistant T. ni larvae reared on either Bt or control cotton. To ensure that C. maculata were not sensitive to the tested Cry toxins independent from the plant background and to add certainty to the hazard assessment, C. maculata larvae were fed artificial diet incorporated with Cry2Ab, Cry1Ac or both at >10 times higher concentrations than in cotton tissue. Artificial diet containing E-64 was included as a positive control. No differences were detected in any life-table parameters between Cry protein-containing diet treatments and the control diet. In contrast, larvae of C. maculata fed the E-64 could not develop to the pupal stage and the 7-d larval weight was significantly negatively affected. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources were confirmed by ELISA and sensitive-insect bioassays. Our results show that C. maculata is not affected by Bt cotton and is not sensitive to Cry2Ab and Cry1Ac at concentrations exceeding the levels in Bt cotton, thus demonstrating that Bt cotton will pose a negligible risk to C. maculata. More importantly, this study demonstrates a comprehensive system for assessing the risk of genetically modified plants on non-target organisms

    Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops

    Get PDF
    Arthropods form a major part of the biodiversity in agricultural landscapes. Many species are valued because they provide ecosystem services, including biological control, pollination and decomposition, or because they are of conservation interest. Some arthropods reduce crop yield and quality, and conventional chemical pesticides, biological control agents and genetically engineered (GE) crops are used to control them. A common concern addressed in the ecological risk assessment (ERA) that precedes regulatory approval of these pest control methods is their potential to adversely affect valued non-target arthropods (NTAs). A key concept of ERA is early-tier testing using worst-case exposure conditions in the laboratory and surrogate test species that are most likely to reveal an adverse effect. If no adverse effects are observed in those species at high exposures, confidence of negligible ecological risk from the use of the pest control method is increased. From experience with chemical pesticides and biological control agents, an approach is proposed for selecting test species for early-tier ERA of GE arthropod-resistant crops. Surrogate species should be selected that most closely meet three criteria: (i) Potential sensitivity: species should be the most likely to be sensitive to the arthropod-active compound based on the known spectrum of activity of the active ingredient, its mode of action, and the phylogenetic relatedness of the test and target species; (ii) Relevance: species should be representative of valued taxa or functional groups that are most likely to be exposed to the arthropod-active compound in the field; and (iii) Availability and reliability: suitable life-stages of the test species must be obtainable in sufficient quantity and quality, and validated test protocols must be available that allow consistent detection of adverse effects on ecologically relevant parameters. Our proposed approach ensures that the most suitable species are selected for testing and that the resulting data provide the most rigorous test of the risk hypothesis of no adverse effect in order to increase the quality and efficiency of ERAs for cultivation of GE crops

    Environmental risk assessment of genetically modified plants - concepts and controversies

    Get PDF
    Background and purpose: In Europe, the EU Directive 2001/18/EC lays out the main provisions of environmental risk assessment (ERA) of genetically modified (GM) organisms that are interpreted very differently by different stakeholders. The purpose of this paper is to: (a) describe the current implementation of ERA of GM plants in the EU and its scientific shortcomings, (b) present an improved ERA concept through the integration of a previously developed selection procedure for identification of non-target testing organisms into the ERA framework as laid out in the EU Directive 2001/18/EC and its supplement material (Commission Decision 2002/623/EC), (c) describe the activities to be carried out in each component of the ERA and (d) propose a hierarchical testing scheme. Lastly, we illustrate the outcomes for three different crop case examples. Main features: Implementation of the current ERA concept of GM crops in the EU is based on an interpretation of the EU regulations that focuses almost exclusively on the isolated bacteria-produced novel proteins with little consideration of the whole plant. Therefore, testing procedures for the effect assessment of GM plants on non-target organisms largely follow the ecotoxicological testing strategy developed for pesticides. This presumes that any potential adverse effect of the whole GM plant and the plant-produced novel compound can be extrapolated from testing of the isolated bacteriaproduced novel compound or can be detected in agronomic field trials. This has led to persisting scientific criticism. Results: Based on the EU ERA framework, we present an improved ERA concept that is system oriented with the GM plant at the centre and integrates a procedure for selection of testing organisms that do occur in the receiving environment. We also propose a hierarchical testing scheme from laboratory studies to field trials and we illustrate the outcomes for three different crop case examples. Conclusions and recommendations: Our proposed concept can alleviate a number of deficits identified in the current approach to ERA of GM plants. It allows the ERA to be tailored to the GM plant case and the receiving environment

    Development of a Tier-1 Assay for Assessing the Toxicity of Insecticidal Substances Against Coleomegilla maculata

    Get PDF
    To assess the potential dietary effects of insecticidal substances on the predacious ladybird beetle, Coleomegilla maculata De Geer, a Tier-1 laboratory testing system was developed. Artificial diets using shrimp eggs were developed, and a tier-1 bioassay examining C. maculata development and survival was designed based on those diets. To further measure the artificial diet in a Tier-1 testing system, larvae of C. maculata were fed the diet treated with different concentrations of an inorganic stomach poison, potassium arsenate (PA), or a cysteine protease inhibitor, E-64. The results demonstrated that the testing system was capable of detecting the dietary effects of both substances on the survival and development of C. maculata. With increasing concentrations of PA in the diet, fewer larvae developed to adults, with only 22.7% larvae surviving to the adult stage in the treatment with the highest content of PA (32 ÎŒg/g of diet). Likewise, dose-dependent responses also were found for other life-table parameters of C. maculata. Similar to the assays with PA, the survival rates of C. maculata consistently decreased with increasing E-64 content in the diet. Survival analysis showed that the insects fed E-64 at 50, 150, and 450 ÎŒg/g in the diet had significantly lower survival rates compared with those on the untreated artificial diet. The study presented here describes a robust testing system that will be useful for assessing the potential hazard (or toxicity) effects after dietary exposure of insecticidal compounds produced by GE plants or conventional insecticides on the ladybird predator, C. maculat

    Insect pests of pigeonpea and their management

    Get PDF
    Pigeonpea (Cajanus cajan) is an important crop in semi-arid tropical and subtropical farming systems, providing high quality vegetable protein, animal feed, and firewood. Insect pests feeding on flowers, pods, and seeds are the most important biotic constraint affecting pigeonpea yields. This review summarizes the biology and ecology of the three most important groups of pests: flower- and pod-feeding Lepidoptera, pod-sucking Hemiptera, and seed-feeding Diptera and Hymenoptera. Recent research investigating the complex interactions among pigeonpea, its key pests, and their natural enemies is also reviewed. These relationships have implications on the pest status of individual species and on possible control strategies. Pigeonpea pest management research has focused until recently on the identification and development of resistant cultivars and on chemical control. Future research must focus on environmentally sound pest management strategies that are compatible with the needs and limitations of pigeonpea farmers. Several priority areas for research are suggested

    Bacillus thuringiensis plants expressing Cry1Ac, Cry2Ab and Cry1F are not toxic to the assassin bug, Zelus renardii

    Get PDF
    Cotton‐ and maize‐producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), have been commercialized since 1996. Bt plants are subjected to environmental risk assessments for non‐target organisms, including natural enemies that suppress pest populations. Here, we used Cry1F‐resistant Spodoptera frugiperda (J.E. Smith) and Cry1Ac and Cry2Ab‐resistant Trichoplusia ni (HĂŒbner) as prey for the assassin bug, Zelus renardii (Kolenati), a common predator in maize and cotton fields. In tritrophic studies, we assessed several fitness parameters of Z. renardii when it fed on resistant S. frugiperda that had fed on Bt maize expressing Cry1F or on resistant T. ni that had fed on Bt cotton expressing Cry1Ac and Cry2Ab. Survival, nymphal duration, adult weight, adult longevity and female fecundity of Z. renardii were not different when they were fed resistant‐prey larvae (S. frugiperda or T. ni) reared on either a Bt crop or respective non‐Bt crops. ELISA tests demonstrated that the Cry proteins were present in the plant at the highest levels, at lower levels in the prey and at the lowest levels in the predator. While Z. renardii was exposed to Cry1F and Cry1Ac and Cry2Ab when it fed on hosts that consumed Bt‐transgenic plants, the proteins did not affect important fitness parameters in this common and important predator

    Polymer chains in confined geometries: Massive field theory approach

    Full text link
    The massive field theory approach in fixed space dimensions d=3d=3 is applied to investigate a dilute solution of long-flexible polymer chains in a good solvent between two parallel repulsive walls, two inert walls and for the mixed case of one inert and one repulsive wall. The well known correspondence between the field theoretical ϕ4\phi^4 O(n)-vector model in the limit n→0n\to 0 and the behavior of long-flexible polymer chains in a good solvent is used to calculate the depletion interaction potential and the depletion force up to one-loop order. Our investigations include modification of renormalization scheme for the case of two inert walls. The obtained results confirm that the depletion interaction potential and the resulting depletion force between two repulsive walls are weaker for chains with excluded volume interaction (EVI) than for ideal chains, because the EVI effectively reduces the depletion effect near the walls. Our results are in qualitative agreement with previous theoretical investigations, experimental results and with results of Monte Carlo simulations.Comment: 18 pages, 10 figure
    • 

    corecore