1,425 research outputs found

    Fractionally Predictive Spiking Neurons

    Full text link
    Recent experimental work has suggested that the neural firing rate can be interpreted as a fractional derivative, at least when signal variation induces neural adaptation. Here, we show that the actual neural spike-train itself can be considered as the fractional derivative, provided that the neural signal is approximated by a sum of power-law kernels. A simple standard thresholding spiking neuron suffices to carry out such an approximation, given a suitable refractory response. Empirically, we find that the online approximation of signals with a sum of power-law kernels is beneficial for encoding signals with slowly varying components, like long-memory self-similar signals. For such signals, the online power-law kernel approximation typically required less than half the number of spikes for similar SNR as compared to sums of similar but exponentially decaying kernels. As power-law kernels can be accurately approximated using sums or cascades of weighted exponentials, we demonstrate that the corresponding decoding of spike-trains by a receiving neuron allows for natural and transparent temporal signal filtering by tuning the weights of the decoding kernel.Comment: 13 pages, 5 figures, in Advances in Neural Information Processing 201

    Consequences of the Pauli exclusion principle for the Bose-Einstein condensation of atoms and excitons

    Get PDF
    The bosonic atoms used in present day experiments on Bose-Einstein condensation are made up of fermionic electrons and nucleons. In this Letter we demonstrate how the Pauli exclusion principle for these constituents puts an upper limit on the Bose-Einstein-condensed fraction. Detailed numerical results are presented for hydrogen atoms in a cubic volume and for excitons in semiconductors and semiconductor bilayer systems. The resulting condensate depletion scales differently from what one expects for bosons with a repulsive hard-core interaction. At high densities, Pauli exclusion results in significantly more condensate depletion. These results also shed a new light on the low condensed fraction in liquid helium II.Comment: 4 pages, 2 figures, revised version, now includes a direct comparison with hard-sphere QMC results, submitted to Phys. Rev. Let

    Engineering Local optimality in Quantum Monte Carlo algorithms

    Full text link
    Quantum Monte Carlo algorithms based on a world-line representation such as the worm algorithm and the directed loop algorithm are among the most powerful numerical techniques for the simulation of non-frustrated spin models and of bosonic models. Both algorithms work in the grand-canonical ensemble and have a non-zero winding number. However, they retain a lot of intrinsic degrees of freedom which can be used to optimize the algorithm. We let us guide by the rigorous statements on the globally optimal form of Markov chain Monte Carlo simulations in order to devise a locally optimal formulation of the worm algorithm while incorporating ideas from the directed loop algorithm. We provide numerical examples for the soft-core Bose-Hubbard model and various spin-S models.Comment: replaced with published versio

    Semiparametric multivariate volatility models

    Get PDF
    Estimation of multivariate volatility models is usually carried out by quasi maximum likelihood (QMLE), for which consistency and asymptotic normality have been proven under quite general conditions. However, there may be a substantial efficiency loss of QMLE if the true innovation distribution is not multinormal. We suggest a nonparametric estimation of the multivariate innovation distribution, based on consistent parameter estimates obtained by QMLE. We show that under standard regularity conditions the semiparametric efficiency bound can be attained. Without reparametrizing the conditional covariance matrix (which depends on the particular model used), adaptive estimation is not possible. However, in some cases the e?ciency loss of semiparametric estimation with respect to full information maximum likelihood decreases as the dimension increases. In practice, one would like to restrict the class of possible density functions to avoid the curse of dimensionality. One way of doing so is to impose the constraint that the density belongs to the class of spherical distributions, for which we also derive the semiparametric efficiency bound and an estimator that attains this bound. A simulation experiment demonstrates the e?ciency gain of the proposed estimator compared with QMLE. --Multivariate volatility,GARCH,semiparametric efficiency,adaptivity

    Phase diagram of Bose-Fermi mixtures in one-dimensional optical lattices

    Full text link
    The ground state phase diagram of the one-dimensional Bose-Fermi Hubbard model is studied in the canonical ensemble using a quantum Monte Carlo method. We focus on the case where both species have half filling in order to maximize the pairing correlations between the bosons and the fermions. In case of equal hopping we distinguish between phase separation, a Luttinger liquid phase and a phase characterized by strong singlet pairing between the species. True long-range density waves exist with unequal hopping amplitudes.Comment: 5 pages, 5 figures, replaced with published versio

    Integrable two-channel p_x+ip_y-wave superfluid model

    Full text link
    We present a new two-channel integrable model describing a system of spinless fermions interacting through a p-wave Feshbach resonance. Unlike the BCS-BEC crossover of the s-wave case, the p-wave model has a third order quantum phase transition. The critical point coincides with the deconfinement of a single molecule within a BEC of bound dipolar molecules. The exact many-body wavefunction provides a unique perspective of the quantum critical region suggesting that the size of the condensate wavefunction, that diverges logarithmically with the chemical potential, could be used as an experimental indicator of the phase transition.Comment: 4 pages, 4 figure

    Existence of Density Functionals for Excited States and Resonances

    Get PDF
    We show how every bound state of a finite system of identical fermions, whether a ground state or an excited one, defines a density functional. Degeneracies created by a symmetry group can be trivially lifted by a pseudo-Zeeman effect. When complex scaling can be used to regularize a resonance into a square integrable state, a DF also exists.Comment: 4 pages, no figure

    Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime

    Get PDF
    Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short range correlations do not enhance the convergence to the hard-core limit.Comment: 4 pages, 3 figures, replaced with published versio
    • …
    corecore