171 research outputs found

    Electrical conductivity and gas-sensing properties of Mg-doped and undoped single-crystalline In2O3 thin films: Bulk vs. surface

    Get PDF
    This study aims to provide a better fundamental understanding of the gas-sensing mechanism of In2O3-based conductometric gas sensors. In contrast to typically used polycrystalline films, we study single crystalline In2O3 thin films grown by molecular beam epitaxy (MBE) as a model system with reduced complexity. Electrical conductance of these films essentially consists of two parallel contributions: the bulk of the film and the surface electron accumulation layer (SEAL). Both these contributions are varied to understand their effect on the sensor response. Conductance changes induced by UV illumination in air, which forces desorption of oxygen adatoms on the surface, give a measure of the sensor response and show that the sensor effect is only due to the SEAL contribution to overall conductance. Therefore, a strong sensitivity increase can be expected by reducing or eliminating the bulk conductivity in single crystalline films or the intra-grain conductivity in polycrystalline films. Gas-response measurements in ozone atmosphere test this approach for the real application

    Comparison of statistical approaches for analyzing incomplete longitudinal patient-reported outcome data in randomized controlled trials

    Get PDF
    Purpose: Missing data are a potential source of bias in the results of RCTs, but are often unavoidable in clinical research, particularly in patient-reported outcome measures (PROMs). Maximum likelihood (ML), multiple imputation (MI), and inverse probability weighting (IPW) can be used to handle incomplete longitudinal data. This paper compares their performance when analyzing PROMs, using a simulation study based on an RCT data set. Methods: Realistic missing-at-random data were simulated based on patterns observed during the follow-up of the knee arthroscopy trial (ISRCTN45837371). Simulation scenarios covered different sample sizes, with missing PROM data in 10%–60% of participants. Monotone and nonmonotone missing data patterns were considered. Missing data were addressed by using ML, MI, and IPW and analyzed via multilevel mixed-effects linear regression models. Root mean square errors in the treatment effects were used as performance parameters across 1,000 simulations. Results: Nonconvergence issues were observed for IPW at small sample sizes. The performance of all three approaches worsened with decreasing sample size and increasing proportions of missing data. MI and ML performed similarly when the MI model was restricted to baseline variables, but MI performed better when using postrandomization data in the imputation model and also in nonmonotone versus monotone missing data scenarios. IPW performed worse than ML and MI in all simulation scenarios. Conclusion: When additional postrandomization information is available, MI can be beneficial over ML for handling incomplete longitudinal PROM data. IPW is not recommended for handling missing PROM data in the simulated scenarios

    Physical characterixation and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sorting

    Get PDF
    An IgG2 monoclonal antibody (mAb) solution was subjected to stirring, generating high concentrations of nanometer and subvisible particles, which were then successfully size enriched into different size bins by low speed centrifugation or a combination of gravitational sedimentation and Fluorescence-Activated Cell Sorting (FACS). The size-fractionated mAb particles were assessed for their ability to elicit the release of cytokines from a population of donor-derived human peripheral blood mononuclear cells (PBMC) at two phases of the immune response. Fractions enriched in nanometer-sized particles showed a lower response than those enriched in micron-sized particles in this assay. Particles of 5–10 μm in size displayed elevated cytokine release profiles compared to other size ranges. Stir-stressed mAb particles had amorphous morphology, contained protein with partially altered secondary structure, elevated surface hydrophobicity (compared to controls), and trace levels of elemental fluorine. FACS size-enriched the mAb particle samples, yet did not notably alter the overall morphology or composition of particles as measured by Microflow imaging, Transmission Electron Microscopy, and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy. The utility and limitations of FACS for size separation of mAb particles and potential of in-vitro PBMC studies to rank order the immunogenic potential of various types of mAb particles is discussed

    Asymmetry through time dependency

    Get PDF
    Given a single network of interactions, asymmetry arises when the links are directed. For example, if protein A upregulates protein B and protein B upregulates protein C, then (in the absence of any further relationships between them) A may affect C but not vice versa. This type of imbalance is reflected in the associated adjacency matrix, which will lack symmetry. A different type of imbalance can arise when interactions appear and disappear over time. If A meets B today and B meets C tomorrow, then (in the absence of any further relationships between them) A may pass a message or disease to C, but not vice versa. Hence, even when each interaction is a two-way exchange, the effect of time ordering can introduce asymmetry. This observation is very closely related to the fact that matrix multiplication is not commutative. In this work, we describe a method that has been designed to reveal asymmetry in static networks and show how it may be combined with a measure that summarizes the potential information flow between nodes in the temporal case. This results in a new method that quantifies the asymmetry arising through time ordering. We show by example that the new tool can be used to visualize and quantify the amount of asymmetry caused by the arrow of time

    Модернизация ректификационной колонны разделения пропан-пропиленовой фракции

    Get PDF
    Объектом проектирования является ректификационная колонна непрерывного действия для разделения пропан пропиленовой фракции, а также конденсатора-холодильника для конденсации пропилена. Целью работы является расчет ректификационной колонны и конденсатора-холодильника. В ходе расчета колонны был составлен материальный баланс колонны, рассчитано оптимальное флегмовое число и оптимальное значение числа теоретических тарелок. Так же был выполнен конструктивно-механический расчет. Входе которого определили исполнительную марку стали ректификационной колонны, условия прочности и устойчивости, найдены значения толщины стенки цилиндрической обечайки, эллиптических днища и крышки. Произведен расчет штуцеров и фланцев. В технологическом расчете теплообменника был составлен тепловой баланс. РассчитаныThe design object is a continuous distillation column for the separation of propane propylene fraction, as well as a condenser-cooler for condensation of propylene. The aim of the work is to calculate the distillation column and condenser-refrigerator. During the calculation of the column, the material balance of the column was compiled, the optimal reflux ratio and the optimal value of the number of theoretical plates were calculated. A structural and mechanical calculation was also performed. The inlet of which the executive grade of the distillation column was determined, the strength and stability conditions, the wall thickness of the cylindrical shell, elliptical bottom and cover were found. Calculation of fittings and flanges. In the technological calculation of the heat exchanger,

    Obtaining EQ-5D-5L utilities from the disease specific quality of life Alzheimer’s disease scale: development and results from a mapping study

    Get PDF
    Purpose The Quality of Life Alzheimer’s Disease Scale (QoL-AD) is commonly used to assess disease specific health-related quality of life (HRQoL) as rated by patients and their carers. For cost-effectiveness analyses, utilities based on the EQ-5D are often required. We report a new mapping algorithm to obtain EQ-5D indices when only QoL-AD data are available. Methods Different statistical models to estimate utility directly, or responses to individual EQ-5D questions (response mapping) from QoL-AD, were trialled for patient-rated and proxy-rated questionnaires. Model performance was assessed by root mean square error and mean absolute error. Results The response model using multinomial regression including age and sex, performed best in both the estimation dataset and an independent dataset. Conclusions The recommended mapping algorithm allows researchers for the first time to estimate EQ-5D values from QoL-AD data, enabling cost-utility analyses using datasets where the QoL-AD but no utility measures were collected

    Twin roll casting of Al-Mg alloy with high added impurity content

    Get PDF
    The final publication is available at Springer from the link belowThe microstructural evolution during twin roll casting (TRC) and downstream processing of AA5754 Al alloy with high added impurity content have been investigated. Strip casts with a high impurity content resulted in coarse α-Al grains and complex secondary phases. The grain size and centreline segregation reduced significantly on the addition of Al-Ti-B grain refiner (GR). Coarse-dendrite arm spacing (DAS) “floating” grains are observed in the impure alloy (IA) with higher volume in the GR strips. Two dimensional (2D) metallographic analysis of the as-cast strip suggests secondary phases (Fe bearing intermetallics and Mg2Si) are discrete and located at the α-Al cell/grain boundaries, while three dimensional (3D) analysis of extracted particles revealed that they were intact, well interconnected and located in interdendritic regions. Homogenizing heat treatment of the cast strip breaks the interconnective networks and modifies the secondary phases to more equiaxed morphology. During rolling, the eqiaxed secondary phases align along the rolling direction. X-ray diffraction (XRD) analysis suggests that α-Al(FeMn)Si and Mg2Si are the predominant secondary phases that formed during casting and remain throughout the downstream processing of the GR-IA. The high impurity sheet processed from TRC resulted in superior strength and ductility than the sheet processed from small book mould ingot casting. This study, have shown that the twin roll casting process can tolerate higher impurity levels and produce formable sheets from recycled aluminium for structural applications.UK Engineering Physical and Sciences Research Council (EPSRC) Centre for Innovative Manufacturing in Liquid Metal Engineering and the Technology Strategic Board (TSB), U

    Modern temporal network theory: A colloquium

    Full text link
    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.Comment: Final accepted versio
    corecore