89 research outputs found

    Genome-wide association analysis of seedling root development in maize (Zea mays L.)

    Get PDF
    Background Plants rely on the root system for anchorage to the ground and the acquisition and absorption of nutrients critical to sustaining productivity. A genome wide association analysis enables one to analyze allelic diversity of complex traits and identify superior alleles. 384 inbred lines from the Ames panel were genotyped with 681,257 single nucleotide polymorphism markers using Genotyping-by-Sequencing technology and 22 seedling root architecture traits were phenotyped. Results Utilizing both a general linear model and mixed linear model, a GWAS study was conducted identifying 268 marker trait associations (p ≤ 5.3×10-7). Analysis of significant SNP markers for multiple traits showed that several were located within gene models with some SNP markers localized within regions of previously identified root quantitative trait loci. Gene model GRMZM2G153722 located on chromosome 4 contained nine significant markers. This predicted gene is expressed in roots and shoots. Conclusion This study identifies putatively associated SNP markers associated with root traits at the seedling stage. Some SNPs were located within or near (\u3c1 kb) gene models. These gene models identify possible candidate genes involved in root development at the seedling stage. These and respective linked or functional markers could be targets for breeders for marker assisted selection of seedling root traits

    A multiple alignment workflow shows the effect of repeat masking and parameter tuning on alignment in plants

    Get PDF
    Alignments of multiple genomes are a cornerstone of comparative genomics, but generating these alignments remains technically challenging and often impractical. We developed the msa_pipeline workflow (https://bitbucket.org/bucklerlab/msa_pipeline) to allow practical and sensitive multiple alignment of diverged plant genomes and calculation of conservation scores with minimal user inputs. As high repeat content and genomic divergence are substantial challenges in plant genome alignment, we also explored the effect of different masking approaches and parameters of the LAST aligner using genome assemblies of 33 grass species. Compared with conventional masking with RepeatMasker, a masking approach based on k-mers (nucleotide sequences of k length) increased the alignment rate of coding sequence and noncoding functional regions by 25 and 14%, respectively. We further found that default alignment parameters generally perform well, but parameter tuning can increase the alignment rate for noncoding functional regions by over 52% compared with default LAST settings. Finally, by increasing alignment sensitivity from the default baseline, parameter tuning can increase the number of noncoding sites that can be scored for conservation by over 76%. Overall, tuning of masking and alignment parameters can generate optimized multiple alignments to drive biological discovery in plants

    Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73 × Mo17 (IBM) population of maize

    Get PDF
    The Mediterranean corn borer or pink stem borer (MCB, Sesamia nonagrioides Lefebvre) causes important yield losses as a consequence of stalk tunneling and direct kernel damage. B73 and Mo17 are the source of the most commercial valuable maize inbred lines in temperate zones, while the intermated B73 × Mo17 (IBM) population is an invaluable source for QTL identification. However, no or few experiments have been carried out to detect QTL for corn borer resistance in the B73 × Mo17 population. The objective of this work was to locate QTL for resistance to stem tunneling and kernel damage by MCB in the IBM population. We detected a QTL for kernel damage at bin 8.05, although the effect was small and two QTL for stalk tunneling at bins 1.06 and 9.04 in which the additive effects were 4 cm, approximately. The two QTL detected for MCB resistance were close to other QTL consistently found for European corn borer (ECB, Ostrinia nubilalis Hübner) resistance, indicating mechanisms of resistance common to both pests or gene clusters controlling resistance to different plagues. The precise mapping achieved with the IBM population will facilitate the QTL pyramiding and the positional cloning of the detected QTL.This research was supported by the National Plan for Research and Development of Spain (Project Cod. AGL2006-13140). B Ordas and R Santiago acknowledge a contract from the Spanish National Research Council (I3P Program) and G Sandoya acknowledges a fellowship from the Ministry of Education and Science (Spain).MECCSICPeer reviewe

    Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte

    Get PDF
    Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, smalleffect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte

    The effect of artificial selection on phenotypic plasticity in maize

    Get PDF
    Remarkable productivity has been achieved in crop species through artificial selection and adaptation to modern agronomic practices. Whether intensive selection has changed the ability of improved cultivars to maintain high productivity across variable environments is unknown. Understanding the genetic control of phenotypic plasticity and genotype by environment (G × E) interaction will enhance crop performance predictions across diverse environments. Here we use data generated from the Genomes to Fields (G2F) Maize G × E project to assess the effect of selection on G × E variation and characterize polymorphisms associated with plasticity. Genomic regions putatively selected during modern temperate maize breeding explain less variability for yield G × E than unselected regions, indicating that improvement by breeding may have reduced G × E of modern temperate cultivars. Trends in genomic position of variants associated with stability reveal fewer genic associations and enrichment of variants 0–5000 base pairs upstream of genes, hypothetically due to control of plasticity by short-range regulatory elements

    Maize Genomes to Fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image datasets

    Get PDF
    Objectives: Crop improvement relies on analysis of phenotypic, genotypic, and environmental data. Given large, well-integrated, multi-year datasets, diverse queries can be made: Which lines perform best in hot, dry environments? Which alleles of specific genes are required for optimal performance in each environment? Such datasets also can be leveraged to predict cultivar performance, even in uncharacterized environments. The maize Genomes to Fields (G2F) Initiative is a multi-institutional organization of scientists working to generate and analyze such datasets from existing, publicly available inbred lines and hybrids. G2F’s genotype by environment project has released 2014 and 2015 datasets to the public, with 2016 and 2017 collected and soon to be made available. Data description: Datasets include DNA sequences; traditional phenotype descriptions, as well as detailed ear, cob, and kernel phenotypes quantified by image analysis; weather station measurements; and soil characterizations by site. Data are released as comma separated value spreadsheets accompanied by extensive README text descriptions. For genotypic and phenotypic data, both raw data and a version with outliers removed are reported. For weather data, two versions are reported: a full dataset calibrated against nearby National Weather Service sites and a second calibrated set with outliers and apparent artifacts removed

    Evaluation of European maize germplasm under cold conditions

    Get PDF
    Maize (Zea mays L.) is a tropical crop with low tolerance to cold conditions and has to be planted late in temperate areas due to low temperatures. The objective of this research was to identify new cold tolerant populations among the European germplasm useful for improving adaptation to early sowing. For that, the European Union Maize Landraces Core Collection (EUMLCC) was evaluated under cold conditions. After a preliminary screening of 95 populations the 11 populations with best germination and early growth under cold conditions were multiplied and evaluated in a cold chamber and in early field sowings at two locations during 2 years. The cold tolerant populations from the EUMLCC were not significantly different from the cold tolerant checks in the cold chamber. In early field sowing, some EUMLCC populations had similar emergence than the commercial checks and the coldest tolerant hybrids, and higher vigor than all the hybrids and the yield of some of the populations surpassed the yield of the cold tolerant hybrids. Altogether, Aranga1 emerged as the most promising candidate as base population for improving adaptation to early sowing.Research was supported by the Spanish National Plan for Research and Development (AGF2004-06776, AGL2007-64218), the Autonomous Government of Galicia (PGIDIT04RAG403006PR) and the Excma. Diputacion Provincial de Pontevedra.Peer reviewe

    Maíz dulce ¿por qué no?

    No full text
    El maíz dulce se diferencia de otros tipos de maíz por la presencia de genes que alteran la síntesis de almidón en el endospermo lo que hace que tenga mejor sabor y textura que el maíz grano. Además, a diferencia del maíz grano, se recoge y consume aproximadamente unos 20 días después de la floración, es decir, antes de que ocurra la maduración del fruto. El maíz dulce posee sustancias (vitaminas, minerales, etc.) con un gran valor nutritivo, en especial, vitamina E, folatos y carotenos ya que actúan como antioxidantes.Peer reviewe
    corecore