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Abstract 

 

Maize (Zea mays L.)  is a tropical crop with low tolerance to cold conditions and has to be planted late in 

temperate areas due to low temperatures. The objective of this research was to identify new cold tolerant 

populations among the European germplasm useful for improving adaptation to early sowing. For that, 

the European Union Maize Landraces Core Collection (EUMLCC) was evaluated under cold conditions. 

After a preliminary screening of 95 populations the 11 populations with best germination and early 

growth under cold conditions were multiplied and evaluated in a cold chamber and in early field sowings 

at two locations during two years. The cold tolerant populations from the EUMLCC were not 

significantly different from the cold tolerant checks in the cold chamber. In early field sowing, some 

EUMLCC populations had similar emergence than the commercial checks and the coldest tolerant 

hybrids, and higher vigor than all the hybrids and the yield of some of the populations surpassed the yield 

of the cold tolerant hybrids. Altogether, Aranga1 emerged as the most promising candidate as base 

population for improving adaptation to early sowing.  
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Introduction 

 

Breeding maize for early sowing requires base germplasm with the ability to germinate and grow 

vigorously under cold conditions (Gupta, 1985; Lauer et al., 1999; Mock and Pearce, 1975; Shawn, 

1988). Several authors have identified maize genotypes appropriate for cultivation under cold conditions 

or early field sowings (Adetimirin et al., 2006; Lee et al., 2002; Mosely et al., 1984; Revilla et al., 2003a; 

Revilla et al., 2000; Semuguruka et al., 1981; Verheul et al., 1996), however, cold tolerance in elite maize 

germplasm is partial, and favorable genes are difficult to identify (Adetimirin et al., 2006; Rodriguez et 

al., 2008). We would expect that maize from northern latitudes, such as European germplasm, would 

perform relatively well under cold conditions. 

Maize was introduced in southern Europe from tropical areas of America and later was adapted also to 

northern latitudes (Revilla et al., 2003b). During those movements, maize suffered natural and artificial 

selection for adaptation to cold temperatures. Among southern European maize, the Spanish germplasm 

has been largely screened for cold tolerance, and the outcome was not particularly promising, since none 

of the populations or inbred lines was tolerant enough for a significant advance of current sowing dates 

(Rodriguez et al., 2007a). In addition, none of the available cold tolerant maize varieties are completely 

tolerant to cold stress and have poor yield and agronomic performance (Revilla et al., 2005). 

Nevertheless, most of the cold tolerant populations had favorable alleles useful to improve cold tolerant 

hybrids (Rodriguez et al., 2007b).  

The search of sources of cold tolerance has not produced completely satisfactory results so far and wider 

collections of germplasm should be screened. In the last decade, the European institutes conserving maize 

collections have developed a large collection of autochthonous varieties. Given the unmanageable 

magnitude of the complete European collection, those institutes have established a core collection called 

the European Union Maize Landrace Core Collection (EUMLCC). The EUMLCC includes representative 

samples of maize varieties from six countries and offers a convenient opportunity to screen the variability 

of European maize. The objective of this research was to test the performance of European maize 

germplasm for early sowing and under cold conditions. 
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Material and Methods 

 

EUMLCC screening 

The 95 populations of the EUMLCC were screened for cold tolerance, along with 8 cold tolerant hybrids, 

used as checks. The 103 entries were grown during 30 days in a 20 m3 cold chamber equipped with three 

selves separated 0.5 m. Conditions were set at 14 h at 14 ºC with light [provided by seven VHO (very 

high output) fluorescent lamps with a photosynthetic photon flux (PPF) of 228 µmol m-2 s-1], and 10 h at 

8 ºC without light. Evaluations were arranged following a randomized complete block design with three 

replications (one replication on each shelf). Twenty six grains from each entry were planted in 21 L trays 

filled with 12 L of sterilized and watered peat (Gramoflor GmbH & Co. KG, Vechta, Germany). Six cold 

tolerance related traits were considered: leaf color, vigor, proportion of emergence, days to emergence, 

emergence rating and proportion of survival. Emergence was recorded every two days up to a maximum 

of 30 days. Analyses of variance were performed for all traits. Sources of variation were genotypes and 

replications. Genotypes were considered fixed effect. Analyses were made using the GLM procedure of 

SAS (SAS Institute, 2007). 

 

Evaluation of cold tolerant populations 

We selected 11 cold tolerant EUMLCC populations using an independent culling system in which 

populations were selected if they were not significantly different from the best one for each trait. The 11 

populations were multiplied in order to produce in the same environment enough seed for further 

evaluations. Multiplications were made by sowing 300 plants from each population and all possible 

crosses were made between plants by using each plant once as male or as female. 

In the cold chamber the 11 EUMLCC populations were evaluated along with 3 populations improved for 

cold tolerance, and 5 cold-tolerant hybrids (Table 1). The methodology and the conditions for the 

evaluation of these 19 varieties in the cold chamber were identical to those of the previous screening 

carried out for the entire EUMLCC. 

In the field the 11 EUMLCC populations plus checks were evaluated in early field sowings during two 

years (2005 and 2006) in two locations, Pontevedra (42º 24' N, 8º 38' W, 20 m above sea level) and 

Pontecaldelas (42º 23´ N, 8º 32´ W, 300 m above sea level). Genotypes were evaluated in a randomized 

complete block design with three replications. Each experimental plot consisted of two rows with 25 hills 
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per row and two grains per hill. Rows were spaced 0.80 m apart and hills were spaced 0.21 m apart. Hills 

were thinned to one plant, achieving a final plant density of approximately 60000 plants/ha. Currently 

accepted management and cultural practices were used in all trials. We measured the same traits as in the 

cold chamber. In addition, we evaluated agronomic performance by recording stand, stem lodging, root 

lodging, days to silking, days to pollen shedding, plant height, plant appearance, ears per plant, grain 

moisture, grain yield, yield/moisture rate (yield in kg/ha divided by moisture in g/kg), ear length, 100 

grain weight, and ear rows. Analyses of variance were performed for each trait, being the sources of 

variation locations, years, replications, varieties, and their interactions. Varieties were considered as fixed 

effect and locations, years and all possible interactions were considered random effects.  
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Results and Discussion 

 

The EUMLCC has a range of flowering from early to medium and has been adapted to a quite wide range 

of climatic conditions, from the cold north to the warm Mediterranean area. Such adaptation could have 

been possible by increasing tolerance to cold conditions or by avoiding cold temperatures by shortening 

the growing period. Previous data show that early varieties grown in cold areas are not usually cold 

tolerant, while those varieties whose cycles imply being sown under cold conditions are more likely 

tolerant (Revilla et al., 1998). Accordingly, the eleven cold tolerant populations selected from the 

EUMLCC for having high emergence and vigour have medium to late flowering time, and those with 

higher yield under early sowing have also high moisture at harvest. 

Cold tolerance cannot be evaluated in the field because temperature is unpredictable and fluctuates. On 

the other side, evaluations of cold tolerance in growth chambers are homogeneous and independent of 

environment, allowing precise evaluations of cold tolerance. However, the cold chamber is so diverse 

from the real conditions that those data have to be validated in field experiments. Indeed, in the field, 

climatic conditions are variable and several diseases and pests alter seed germination at the first stages of 

plant growth, enlarging the errors of estimates. The present results show that genotypes emerged earlier at 

the field than in the cold chamber, though with lower proportion, suggesting that cold tolerance was not 

the main limiting factor for germination in the field. Nonetheless, varieties significantly differed for most 

vegetative traits, except days to emergence, leaf color, and ears per plant. 

Emergence in the cold chamber and in the field was not clearly related. In fact, the correlation coefficients 

between each trait measured in the field and in the cold chamber were not significant and below 0.3 (Data 

not shown). Varieties with short emergence period and high rate of emergence in the cold chamber had 

pale color in the field. Actually correlations were 0.62 (P< 0.01) between days to emergence in the field 

and color in the chamber, and -0.50 (P<0.05) between rate of emergence in the field and color in the 

chamber. Considering color in the field, the correlations with emergence in the chamber followed the 

same pattern. Varieties with a large emergence proportion in the cold chamber, as Spin or Aranga1, had a 

low emergence in the field, and the opposite was true for Tuy and Rebordanes(F)C2. However, varieties 

as Guernika and Viseu have an acceptable emergence both in the cold chamber and at the field. 

Regarding emergence and early vigor at the field, Tuy and Rebordanes(F)C2 had high values for both, 

and Lagos and Sajambre had low values for both. Menkir and Larter (1985) pointed out that emergence 



 7 

related traits determined under controlled environment conditions were not correlated with those recorded 

in the field; however, the evaluation for cold tolerance can only be guaranteed in a cold chamber, since 

the temperature in the field is unpredictable and variable. Therefore, both the laboratory and the field 

evaluations are necessary for choosing the best genotypes in order to effectively evaluate for cold 

conditions in the cold chamber and for field performance under natural conditions. 

Altogether, the EUMLCC populations Aranga1 and Viseu were the most cold tolerant, Aranga1 and 

Baiao outstand for vegetative traits, and Tuy, Aranga1, Lagos, and Guernika yielded more than some cold 

tolerant hybrids. However, differences in growth cycle are large and, it has to be pointed out that, among 

the previous varieties, only Baiao has short time to flowering and low grain moisture at harvest, followed 

by Viseu, while Guernika, Tuy and Aranga1 are medium cycle varieties and Lagos has the longest cycle 

and the highest moisture. Therefore, the EUMLCC population Aranga1 was the most promising candidate 

as base population for improving cold tolerance in maize. Aranga1 is a medium-cycle semi-flint and 

yellow-kernel population from Galicia (northwest of Spain). The latest population Lagos, and the earliest 

one, Sajambre, performed quite poorly, while the early population Baiao had intermediate values for yield 

and other agronomic traits.  

The relationships between cold chamber and field evaluations depends on the genotypes and the 

environments, and some authors report significant and positive correlations between emergence in 

controlled environments and at the field, or between emergence and seedling growth, while others do not 

find clear relationships (Menkir and Larter, 1985; Revilla et al., 1999; Rodriguez et al., 2007a). 

Differences between the cold chamber and the field are mainly due to the variable and unpredictable 

conditions of the field, while differences between emergence and early growth are due to physiological 

and genetic effects (Cooper and Macdonal, 1970; Hodges et al., 1997; Revilla et al., 1999). Therefore, 

evaluations of genotypes should involve cold chamber trials in order to actually estimate tolerance to cold 

conditions, as well as field trials for screening agronomic performance under real conditions. 

Furthermore, evaluations should involve a series of measurements of emergence and early growth in the 

chamber, and until grain yield in the field. 

Contrarily to our expectations, in the preliminary screening of the whole collection, maize populations 

from the north performed worse than southern populations under cold conditions since only populations 

from southern countries (except for Estarvielle from France) were cold tolerant. Certainly, previous 

reports with reduced numbers of entries have shown that genotypes coming from colder areas are not 
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necessarily more cold tolerant than those from warmer areas. In fact, Revilla et al. (1998) affirmed that 

the origin of a variety in a cold region does not warranty cold tolerance, because genotypes with short 

growing cycle escape cold temperatures when planted late, and Malvar et al. (2005)stated that selection 

would favor cold tolerance in long-cycle populations which must be sown early. Accordingly, the 

population performing best in the cold chamber and at early sowing was the medium-cycle Aranga1, but 

most medium-cycle or late populations were not so cold tolerant. 

As conclusion, the EUMLCC populations belonging to the flint European germplasm group have some 

potential value for improving cold tolerance of maize, although they have to be improved for yield and 

other yield components and agronomic traits. 
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Table 1. Cold tolerant maize populations from the European Union Maize Landrace Core Collection 

(EUMLCC) and checks evaluated in a cold chamber and early sowing. 

 

Variety 

 

Germplasm type EUMLCC Code 

 

Country Kernel type 

Kernel 

color 

Aranga1 Landrace ESP11973C03 Spain Semi-flint Yellow 

Baiâo Landrace PRT00100120 Portugal Flint Yellow 

Estarvielle Landrace FRA0410010 France Flint Yellow 

Guernika Landrace ESP11982031 Spain Flint Yellow 

Guetaria Landrace ESP0070784 Spain Flint Yellow 

Hazas de Soba Landrace ESP0070127 Spain Flint Brown 

Lagos Landrace PRT00100530 Portugal Flint Orange 

Sajambre Landrace ESP0090300 Spain Semi-flint Orange 

Spin Landrace ITA0370143 Italy Semi-flint Red 

Tuy Landrace ESP0090205 Spain Flint Yellow 

Viseu Landrace PRT00100394 Portugal Flint Yellow 

Rebordanes(F)C2 Improved population Check Spain Flint White 

Santiago(F)C2 Improved population Check Spain Flint Yellow 

Silver King(F)C2 Improved population Check USA Dent White 

EP80 x F7 Cold tolerant hybrid Check  Flint Yellow 

EP80 x Z78007 Cold tolerant hybrid Check  Flint Yellow 

A666 x F7 Cold tolerant hybrid Check  Flint x Dent Yellow 

A666 x EP80 Cold tolerant hybrid Check  Flint x Dent Yellow 

A666 x Z78007 Cold tolerant hybrid Check  Flint x Dent Yellow 

Miguel Commercial hybrid  Check  Dent Yellow 

Randa Commercial hybrid Check  Dent Yellow 
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Table 2. Means and least significant difference (LSD) for the cold tolerant populations from the European 

Union Maize Landrace Core Collection and checks evaluated in a cold chamber 

Variety 

Days to 

emergence 

Proportion of 

emergence 

Rate of 

emergence 

Seedling 

vigor 

Leaf 

color 

Proportion 

of survival 

 days 0 – 1 Plants day-2 1 - 9 1 - 9 0 - 1 

Aranga1 19.0 0.92  15.7   4.0   4.7   1.00   

Baiao 18.3 0.88  21.1   5.0   5.0   0.99   

Estarvielle 16.3 0.92  31.4   6.7   5.0   0.99   

Guernika 17.3 0.91  20.5   4.3   3.0   0.99   

Guetaria 18.0 0.72  23.5   5.3   4.3   0.98   

Hazas de Sobas 17.3 0.86  24.9   5.0   3.7   1.00   

Lagos 17.7 0.68  23.5   5.3   4.7   0.98   

Sajambre 15.7 0.85  35.0   6.3   4.7   1.00   

Spin 16.7 0.95  32.1   6.3   5.3   1.00   

Tuy 18.3 0.76  17.1   5.0   4.3   1.00   

Viseu 17.0 0.91  29.1   6.0   5.0   1.00   

Rebordanes(F)C2 17.3 0.87  25.0   6.0   3.7   0.99   

Santiago(F)C2 18.7 0.91  19.6   3.3   4.0   1.00   

Silver King(F)C2 18.7 0.91  17.9   4.0   3.3   1.00   

EP80 x F7 18.3 0.82  18.6   4.0   4.0   1.00   

EP80 x Z78007 16.7 0.93  33.8   5.7   6.0   1.00   

A666 x F7 17.7 0.60  15.9   4.0   4.3   0.93   

A666 x EP80 18.3 0.67  16.8   4.3   4.3   0.98   

A666 x Z78007 18.0 0.80  25.6   4.3   4.3   0.98   

LSD (0.05) _ 0.13 _ _ _ 0.03 
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Table 3. Means and standard errors (SE) of stover traits for the cold tolerant populations from the European Union Maize Landrace Core Collection and checks 

evaluated at two locations during two years ordered by flowering time. 

Variety 

Days to 

emergence 

Proportion 

of 

emergence 

Early 

vigor 

Leaf 

color Stand 

Stem 

lodging 

Root 

lodging 

Female 

flowering 

Male 

flowering 

Plant 

height 

Plant 

appearance 

 Days 0 – 1 1 - 9 1 - 9 0 – 1 0 – 1 0 – 1 days days cm 1 – 9 

Sajambre 12.0 0.50 4.2 4.7 0.35 0.34 0.03 58 57 124 1.3 

Estarvielle 12.1 0.60 5.5 4.3 0.57 0.22 0.01 62 61 157 3.0 

Hazas de Sobas 12.4 0.62 4.9 4.7 0.65 0.28 0.00 67 66 170 3.7 

A666 x Z78007 12.4 0.49 3.9 4.7 0.60 0.13 0.00 69 67 177 4.7 

Baiao 12.3 0.74 5.9 5.7 0.82 0.10 0.02 69 68 178 4.9 

A666 x F7 12.4 0.61 4.4 5.0 0.79 0.33 0.02 69 68 170 4.1 

EP80 x Z78007 14.0 0.13 3.2 4.3 0.28 0.11 0.01 71 70 197 4.9 

Viseu 11.8 0.64 6.4 5.0 0.75 0.28 0.01 72 70 196 5.1 

Santiago(F)C2 11.8 0.67 5.6 5.0 0.85 0.14 0.01 72 70 179 4.8 

Tuy 12.0 0.69 7.1 6.0 0.81 0.32 0.03 73 71 203 6.0 

EP80 x F7 12.3 0.50 4.4 5.0 0.70 0.16 0.00 73 71 193 4.9 

Guernika 11.6 0.63 5.8 5.3 0.76 0.44 0.02 74 71 208 6.2 



 15 

Spin 11.8 0.55 4.5 5.0 0.68 0.13 0.01 75 72 199 5.3 

Rebordanes(F)C2 11.9 0.74 6.9 5.3 0.86 0.19 0.03 75 73 188 5.4 

Aranga1 12.1 0.60 6.7 5.3 0.78 0.18 0.02 76 74 210 6.9 

SilverKing(F)C2 10.9 0.57 4.2 4.7 0.64 0.40 0.04 76 74 196 4.8 

A666 x EP80 11.5 0.65 5.1 5.3 0.83 0.11 0.00 76 74 220 7.6 

Guetaria 12.1 0.56 5.3 5.0 0.72 0.11 0.02 78 75 194 5.6 

Miguel 11.8 0.65 3.7 4.7 0.84 0.07 0.00 80 79 226 7.7 

Randa 12.6 0.59 4.0 4.7 0.83 0.06 0.00 86 84 231 8.2 

Lagos 12.4 0.52 4.3 4.3 0.68 0.23 0.07 89 86 228 6.4 

LSD (0.05) _ 0.21 0.9  _ 0.17 0.15 0.02 2 2 14 1.0 
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Table 4. Means and standard errors (SE) of ear traits for the cold tolerant populations from the European 

Union Maize Landrace Core Collection and checks evaluated at two locations during two years ordered 

by kernel moisture at harvest. 

Variety 

Ears per 

plant 

Grain 

moisture 

Grain 

yield 

Yield / 

moisture Ear length 

100-Kernel 

weight Ear rows 

 No. g/kg t/ha % cm g No. 

A666 x Z78007 1.01 188 2.9 15.5 15 35 11 

EP80 x Z78007 1.11 189 1.5 8.1 16 32 12 

Santiago(F)C2 1.02 190 3.4 17.9 15 29 13 

Hazas de Sobas 1.09 190 2.0 10.7 15 29 9 

Estarvielle 1.18 194 2.4 12.5 13 35 11 

Baiao 1.18 197 3.6 18.3 14 30 11 

Viseu 1.11 206 3.5 17.4 17 31 12 

Rebordanes(F)C2 1.03 208 4.4 20.8 18 37 11 

SilverKing(F)C2 0.92 208 2.7 13.9 14 29 15 

Sajambre 1.59 212 0.7 3.1 10 29 8 

Miguel 1.09 214 6.0 28.2 18 30 15 

Aranga1 1.11 216 4.2 19.8 16 35 13 

Guernika 1.03 217 3.8 17.3 15 35 12 

Spin 0.98 217 3.0 13.8 15 29 13 

EP80 x F7 1.10 222 3.8 17.6 17 29 13 

A666 x F7 1.02 224 4.3 19.4 16 30 12 

Tuy 1.01 226 4.6 20.6 16 41 11 

A666 x EP80 1.04 231 5.1 21.8 17 34 13 

Randa 1.02 232 7.8 33.7 18 35 17 

Guetaria 0.87 245 3.0 12.2 15 38 13 

Lagos 1.04 302 4.1 13.4 18 40 12 

LSD (0.05) _ 23 1.3 5.8 2 3 1 
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