36 research outputs found

    Age-Related Changes of Myelin Basic Protein in Mouse and Human Auditory Nerve

    Get PDF
    Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis. However, information on age-related cellular and molecular alterations in the human spiral ganglion remains scant, owing to the very limited availably of human specimens suitable for high resolution morphological and molecular analysis. This study aimed at defining age-related alterations in the auditory nerve in human temporal bones and determining if immunostaining for myelin basic protein (MBP) can be used as an alternative approach to electron microscopy for evaluating myelin degeneration. For comparative purposes, we evaluated ultrastructural alternations and changes in MBP immunostaining in aging CBA/CaJ mice. We then examined 13 temporal bones from 10 human donors, including 4 adults aged 38–46 years (middle-aged group) and 6 adults aged 63–91 years (older group). Similar to the mouse, intense immunostaining of MBP was present throughout the auditory nerve of the middle-aged human donors. Significant declines in MBP immunoreactivity and losses of MBP+ auditory nerve fibers were observed in the spiral ganglia of both the older human and aged mouse ears. This study demonstrates that immunostaining for MBP in combination with confocal microscopy provides a sensitive, reliable, and efficient method for assessing alterations of myelin sheaths in the auditory nerve. The results also suggest that myelin degeneration may play a critical role in the SGN loss and the subsequent decline of the auditory nerve function in presbyacusis

    Common Molecular Etiologies Are Rare in Nonsyndromic Tibetan Chinese Patients with Hearing Impairment

    Get PDF
    Background: Thirty thousand infants are born every year with congenital hearing impairment in mainland China. Racial and regional factors are important in clinical diagnosis of genetic deafness. However, molecular etiology of hearing impairment in the Tibetan Chinese population living in the Tibetan Plateau has not been investigated. To provide appropriate genetic testing and counseling to Tibetan families, we investigated molecular etiology of nonsyndromic deafness in this population. Methods: A total of 114 unrelated deaf Tibetan children from the Tibet Autonomous Region were enrolled. Five prominent deafness-related genes, GJB2, SLC26A4, GJB6, POU3F4, and mtDNA 12S rRNA, were analyzed. Inner ear development was evaluated by temporal CT. A total of 106 Tibetan hearing normal individuals were included as genetic controls. For radiological comparison, 120 patients, mainly of Han ethnicity, with sensorineural hearing loss were analyzed by temporal CT. Results: None of the Tibetan patients carried diallelic GJB2 or SLC26A4 mutations. Two patients with a history of aminoglycoside usage carried homogeneous mtDNA 12S rRNA A1555G mutation. Two controls were homozygous for 12S rRNA A1555G. There were no mutations in GJB6 or POU3F4. A diagnosis of inner ear malformation was made in 20.18 % of the Tibetan patients and 21.67 % of the Han deaf group. Enlarged vestibular aqueduct, the most common inner ear deformity, was not found in theTibetan patients, but was seen in 18.33 % of the Han patients. Common molecular etiologies

    What’s retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151310/1/dvg23308.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151310/2/dvg23308_am.pd

    Analysis of the effects of sex hormone background on the rat choroid plexus transcriptome by cDNA microarrays

    Get PDF
    The choroid plexus (CP) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF), the blood-CSF barrier, that are the main site of production and secretion of CSF. Sex hormones are widely recognized as neuroprotective agents against several neurodegenerative diseases, and the presence of sex hormones cognate receptors suggest that it may be a target for these hormones. In an effort to provide further insight into the neuroprotective mechanisms triggered by sex hormones we analyzed gene expression differences in the CP of female and male rats subjected to gonadectomy, using microarray technology. In gonadectomized female and male animals, 3045 genes were differentially expressed by 1.5-fold change, compared to sham controls. Analysis of the CP transcriptome showed that the top-five pathways significantly regulated by the sex hormone background are olfactory transduction, taste transduction, metabolism, steroid hormone biosynthesis and circadian rhythm pathways. These results represent the first overview of global expression changes in CP of female and male rats induced by gonadectomy and suggest that sex hormones are implicated in pathways with central roles in CP functions and CSF homeostasis

    Bone mineral density in adults with arthrogryposis multiplex congenita: a retrospective cohort analysis

    No full text
    International audienceAbstract The primary objective of this study was to evaluate the prevalence of low femoral and lumbar spine bone mineral density (BMD) in adults with arthrogryposis multiplex congenita (AMC). We performed a retrospective cohort analysis of adults with AMC who were enrolled in the French Reference Center for AMC and in the Pediatric and Adult Registry for Arthrogryposis (PARART, NCT05673265). Patients who had undergone dual-energy X-ray absorptiometry (DXA) and/or vitamin D testing were included in the analysis. Fifty-one patients (mean age, 32.9 ± 12.6 years) were included; 46 had undergone DXA. Thirty-two (32/51, 62.7%) patients had Amyoplasia, and 19 (19/51, 37.3%) had other types of AMC (18 distal arthrogryposis, 1 Larsen). Six patients (6/42, 14.3%) had a lumbar BMD Z score less than − 2. The mean lumbar spine Z score (− 0.03 ± 1.6) was not significantly lower than the expected BMD Z score in the general population. Nine (9/40, 22.5%) and 10 (10/40, 25.0%) patients had femoral neck and total hip BMD Z scores less than − 2, respectively. The mean femoral neck (− 1.1 ± 1.1) and total hip (− 1.2 ± 1.2) BMD Z scores in patients with AMC were significantly lower than expected in the general population (p < 0.001). Femoral neck BMD correlated with height (rs = 0.39, p = 0.01), age (rs = − 0.315, p = 0.48); total hip BMD correlated with height (rs = 0.331, p = 0.04) and calcium levels (rs = 0.41, p = 0.04). Twenty-five patients (25/51, 49.0%) reported 39 fractures. Thirty-one (31/36, 86.1%) patients had 25-hydroxyvitamin D levels less than 75 nmol/l, and 6 (6/36, 16.7%) had 25-hydroxyvitamin D levels less than 75 nmol/l. Adults with AMC had lower hip BMD than expected for their age, and they more frequently showed vitamin D insufficiency. Screening for low BMD by DXA and adding vitamin D supplementation when vitamin D status is insufficient should be considered in adults with AMC, especially if there is a history of falls or fractures

    Impact of a long-term antibiotic stewardship program targeting fluoroquinolones in a French local hospital

    No full text
    International audienceFluoroquinolones (FQs) are major antibiotics but their wide use in hospital and community settings has led to an increased bacterial resistance against this antibiotic class. We aimed to assess the efficiency of an antibiotic stewardship program targeting FQs in a local hospital, and its impact on bacterial resistance
    corecore