39 research outputs found

    Социально-психологические факторы снижения безопасности дорожного движения в системе взаимодействия Человек-Техника-Среда

    Get PDF
    Predicting the effect of climate change on biodiversity is a multifactorial problem that is complicated by potentially interactive effects with habitat properties and altered species interactions. In a microcosm experiment with communities of microalgae, we analysed whether the effect of rising temperature on diversity depended on the initial or the final temperature of the habitat, on the rate of change, on dispersal and on landscape heterogeneity. We also tested whether the response of species to temperature measured in monoculture allowed prediction of the composition of communities under rising temperature. We found that the final temperature of the habitat was the primary driver of diversity in our experimental communities. Species richness declined faster at higher temperatures. The negative effect of warming was not alleviated by a slower rate of warming or by dispersal among habitats and did not depend on the initial temperature. The response of evenness, however, did depend on the rate of change and on the initial temperature. Community composition was not predictable from monoculture assays, but higher fitness inequality (as seen by larger variance in growth rate among species in monoculture at higher temperatures) explained the faster loss of biodiversity with rising temperature

    Thermal performance of planktonic ciliates differs between marine and freshwaters: A case study providing guidance for climate change studies

    Full text link
    Predicting the performance of aquatic organisms in a future warmer climate depends critically on understanding how current temperature regimes affect the organisms’ growth rates. Using a meta-analysis for published experimental data, we calculated the activation energy (Ea) to parameterize the thermal sensitivity of marine and freshwater ciliates, major players in marine and freshwater food webs. We hypothesized that their growth rates increase with temperature but that ciliates dwelling in the immense, thermally stable ocean are closely adapted to their ambient temperature and have lower Ea than ciliates living in smaller, thermally more variable freshwater environments. The Ea was in the range known from other taxa but significantly lower for marine ciliates (0.390 ± 0.105 eV) than for freshwater ciliates (0.633 ± 0.060 eV), supporting our hypothesis. Accordingly, models aiming to predict the ciliate response to increasing water temperature should apply the environment-specific activation energies provided in this study

    Functional diversity can facilitate the collapse of an undesirable ecosystem state

    Full text link
    Biodiversity may increase ecosystem resilience. However, we have limited understanding if this holds true for ecosystems that respond to gradual environmental change with abrupt shifts to an alternative state. We used a mathematical model of anoxic-oxic regime shifts and explored how trait diversity in three groups of bacteria influences resilience. We found that trait diversity did not always increase resilience: greater diversity in two of the groups increased but in one group decreased resilience of their preferred ecosystem state. We also found that simultaneous trait diversity in multiple groups often led to reduced or erased diversity effects. Overall, our results suggest that higher diversity can increase resilience but can also promote collapse when diversity occurs in a functional group that negatively influences the state it occurs in. We propose this mechanism as a potential management approach to facilitate the recovery of a desired ecosystem state

    Predator Dispersal Determines the Effect of Connectivity on Prey Diversity

    Get PDF
    Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation

    Disturbance and diversity at two spatial scales

    Get PDF
    The spatial scale of disturbance is a factor potentially influencing the relationship between disturbance and diversity. There has been discussion on whether disturbances that affect local communities and create a mosaic of patches in different successional stages have the same effect on diversity as regional disturbances that affect the whole landscape. In a microcosm experiment with metacommunities of aquatic protists, we compared the effect of local and regional disturbances on the disturbance–diversity relationship. Local disturbances destroyed entire local communities of the metacommunity and required reimmigration from neighboring communities, while regional disturbances affected the whole metacommunity but left part of each local community intact. Both disturbance types led to a negative relationship between disturbance intensity and Shannon diversity. With strong local disturbance, this decrease in diversity was due to species loss, while strong regional disturbance had no effect on species richness but reduced the evenness of the community. Growth rate appeared to be the most important trait for survival after strong local disturbance and dominance after strong regional disturbance. The pattern of the disturbance–diversity relationship was similar for both local and regional diversity. Although local disturbances at least temporally increased beta diversity by creating a mosaic of differently disturbed patches, this high dissimilarity did not result in regional diversity being increased relative to local diversity. The disturbance–diversity relationship was negative for both scales of diversity. The flat competitive hierarchy and absence of a trade-off between competition and colonization ability are a likely explanation for this pattern

    Competition–colonization trade-offs in a ciliate model community

    Get PDF
    There is considerable theoretical evidence that a trade-off between competitive and colonization ability enables species coexistence. However, empirical studies testing for the presence of a competition–colonization (CC) trade-off and its importance for species coexistence have found mixed results. In a microcosm experiment, we looked for a CC trade-off in a community of six benthic ciliate species. For each species, we measured the time needed to actively disperse to and colonize an empty microcosm. By measuring dispersal rates and growth rates of the species, we were able to differentiate between these two important components of colonization ability. Competitive ability was investigated by comparing species’ growth with or without a competitor in all pairwise species combinations. Species significantly differed in their colonization abilities, with good colonizers having either high growth rates or high dispersal rates or both. Although species showed a clear competitive hierarchy, competitive and colonization ability were uncorrelated. The weakest competitors were also the weakest colonizers, and the strongest competitor was an intermediate colonizer. However, some of the inferior competitors had higher colonization abilities than the strongest competitor, indicating that a CC trade-off may enable coexistence for a subset of the species. Absence of a community-wide CC trade-off may be based on the lack of strong relationships between the traits underlying competitive and colonization ability. We show that temporal effects and differential resource use are alternative mechanisms of coexistence for the species that were both slow colonizers and poor competitors

    Adaptation and competition in deteriorating environments

    Full text link
    Evolution might rescue populations from extinction in changing environments. Using experimental evolution with microalgae, we investigated if competition influences adaptation to an abiotic stressor, and vice versa, if adaptation to abiotic change influences competition. In a first set of experiments, we propagated monocultures of five species with and without increasing salt stress for approximately 180 generations. When assayed in monoculture, two of the five species showed signatures of adaptation, that is, lines with a history of salt stress had higher population growth rates at high salt than lines without prior exposure to salt. When assayed in mixtures of species, however, only one of these two species had increased population size at high salt, indicating that competition can alter how adaptation to abiotic change influences population dynamics. In a second experiment, we cultivated two species in monocultures and in pairs, with and without increasing salt. While we found no effect of competition on adaptation to salt, our experiment revealed that evolutionary responses to salt can influence competition. Specifically, one of the two species had reduced competitive ability in the no-salt environment after long-term exposure to salt stress. Collectively, our results highlight the complex interplay of adaptation to abiotic change and competitive interactions

    Transitory versus Persistent Effects of Connectivity in Environmentally Homogeneous Metacommunities

    Get PDF
    <div><p>While the effect of habitat connectivity on local and regional diversity has been analysed in a number of studies, time-dependent dynamics in metacommunities have received comparatively little consideration. When local patches of a metacommunity are identical in environmental conditions but differ in initial community composition, dispersal among patches may result in homogenization of local communities. In a microcosm experiment with benthic ciliates, we tested the hypothesis that the effect of connectivity on diversity is time-dependent and only transitory, with the degree of connectivity affecting the time to homogenization but not the final outcome. Six microcosms were connected to a metacommunity with one of three levels of connectivity. The six patches differed in initial community composition but were identical in environmental conditions. We found a time-dependent and transitory effect of connectivity on local and regional richness and on local Shannon diversity, while Bray-Curtis dissimilarity and regional Shannon diversity were persistently affected by connectivity. Local richness increased and regional richness decreased with connectivity during the initial phase of the experiment but soon converged to similar values in all three connectivity treatments. Local Shannon diversity was unimodally related to time, with maximum diversity reached sooner with high than with medium or low connectivity. Eventually, however, local diversity converged to similar values irrespective of connectivity. At the regional scale, Shannon diversity was persistently lower with high than with low connectivity. While initial differences in community composition vanished with medium and high connectivity, they were maintained with low connectivity resulting in persistently high beta and regional diversity. The effect of connectivity on ciliate community composition translated down to the algal resource, as stronger dominance of the superior competitor with high and medium connectivity resulted in stronger depletion of the resource.</p> </div
    corecore