953 research outputs found

    Gentle Perturbations of the Free Bose Gas I

    Full text link
    It is demonstrated that the thermal structure of the noncritical free Bose Gas is completely described by certain periodic generalized Gaussian stochastic process or equivalently by certain periodic generalized Gaussian random field. Elementary properties of this Gaussian stochastic thermal structure have been established. Gentle perturbations of several types of the free thermal stochastic structure are studied. In particular new models of non-Gaussian thermal structures have been constructed and a new functional integral representation of the corresponding euclidean-time Green functions have been obtained rigorously.Comment: 51 pages, LaTeX fil

    Mapping Exoplanets

    Full text link
    The varied surfaces and atmospheres of planets make them interesting places to live, explore, and study from afar. Unfortunately, the great distance to exoplanets makes it impossible to resolve their disk with current or near-term technology. It is still possible, however, to deduce spatial inhomogeneities in exoplanets provided that different regions are visible at different times---this can be due to rotation, orbital motion, and occultations by a star, planet, or moon. Astronomers have so far constructed maps of thermal emission and albedo for short period giant planets. These maps constrain atmospheric dynamics and cloud patterns in exotic atmospheres. In the future, exo-cartography could yield surface maps of terrestrial planets, hinting at the geophysical and geochemical processes that shape them.Comment: Updated chapter for Handbook of Exoplanets, eds. Deeg & Belmonte. 17 pages, including 6 figures and 4 pages of reference

    Cold Dark Matter in SUSY Theories. The Role of Nuclear Form Factors and the Folding with the LSP Velocity

    Full text link
    The momentum transfer dependence of the total cross section for elastic scattering of cold dark matter candidates, i.e. lightest supersymmetric particle (LSP), with nuclei is examined. The presented calculations of the event rates refer to a number of representative nuclear targets throughout the periodic table and have been obtained in a relatively wide phenomenologically allowed SUSY parameter space. For the coherent cross sections it is shown that, since the momentum transfer can be quite big for large mass of the LSP and heavy nuclei even though the energy transfer is small (100KeV\le 100 KeV), the total cross section can in such instances be reduced by a factor of about five. For the spin induced cross section of odd-A nuclear targets, as is the case of 207Pb^{207}Pb studied in this work, we found that the reduction is less pronounced, since the high multipoles tend to enhance the cross section as the momentum transfer increases (for LSP mass<200GeVmass < 200 GeV) and partially cancell the momentum retardation. The effect of the Earth's revolution around the sun on these event rates is also studied by folding with a Maxwellian LSP-velocity distribution which is consistent with its density in the halos. We thus found that the convoluted event rates do not appreciably change compared to those obtained with an average velocity. The event rates increase with A and, in the SUSY parameter space considered, they can reach values up to 140 y1Kg1y^{-1}Kg^{-1} for Pb. The modulation effect, however, was found to be small (less than ±5\pm 5%).Comment: 23 LATEX pages, 4 Tables, 3 PostScript Figures included. Phys. Rev. D, to be publishe

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Outcomes in patients with gunshot wounds to the brain.

    Get PDF
    Introduction:Gunshot wounds to the brain (GSWB) confer high lethality and uncertain recovery. It is unclear which patients benefit from aggressive resuscitation, and furthermore whether patients with GSWB undergoing cardiopulmonary resuscitation (CPR) have potential for survival or organ donation. Therefore, we sought to determine the rates of survival and organ donation, as well as identify factors associated with both outcomes in patients with GSWB undergoing CPR. Methods:We performed a retrospective, multicenter study at 25 US trauma centers including dates between June 1, 2011 and December 31, 2017. Patients were included if they suffered isolated GSWB and required CPR at a referring hospital, in the field, or in the trauma resuscitation room. Patients were excluded for significant torso or extremity injuries, or if pregnant. Binomial regression models were used to determine predictors of survival/organ donation. Results:825 patients met study criteria; the majority were male (87.6%) with a mean age of 36.5 years. Most (67%) underwent CPR in the field and 2.1% (n=17) survived to discharge. Of the non-survivors, 17.5% (n=141) were considered eligible donors, with a donation rate of 58.9% (n=83) in this group. Regression models found several predictors of survival. Hormone replacement was predictive of both survival and organ donation. Conclusion:We found that GSWB requiring CPR during trauma resuscitation was associated with a 2.1% survival rate and overall organ donation rate of 10.3%. Several factors appear to be favorably associated with survival, although predictions are uncertain due to the low number of survivors in this patient population. Hormone replacement was predictive of both survival and organ donation. These results are a starting point for determining appropriate treatment algorithms for this devastating clinical condition. Level of evidence:Level II

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore