15 research outputs found

    In Subfertile Couple, Abdominal Fat Loss in Men Is Associated with Improvement of Sperm Quality and Pregnancy: A Case-Series

    Get PDF
    International audienceBackground: The impact of overweight among men of reproductive-age may affect fertility. Abdominal fat, more than body mass index, is an indicator of higher metabolic risk, which seems to be involved in decreasing sperm quality. This study aims to assess the relationship between abdominal fat and sperm DNA fragmentation and the effect of abdominal fat loss, among 6 men in subfertile couples. Methods: Sperm DNA fragmentation, abdominal fat and metabolic and hormonal profiles were measured in the 6 men before and after dietary advices. Seminal oxidative stress and antioxidant markers were determined. Results: After several months of a lifestyle program, all 6 men lost abdominal fat (patient 1: loss of 3 points of abdominal fat, patient 2: loss of 3 points, patient 3: loss of 2 points, patient 4: loss of 1 point, patient 5: loss of 4 points and patient 6: loss of 13 points). At the same time, their rate of sperm DNA fragmentation decreased: 9.5% vs 31%, 24% vs 43%, 18% vs 47%, 26.3% vs 66%, 25.4% vs 35% and 1.7% vs 25%. Also, an improvement in both metabolic (significant decrease in triglycerides and total cholesterol; p = 0.0139) and hormonal (significant increase in testosterone/oestradiol ratio; p = 0.0139) blood profiles was observed after following the lifestyle program. In seminal plasma, the amount of SOD2 has significantly increased (p = 0.0139) while in parallel carbonylated proteins have decreased. Furthermore, all spouses got pregnant. All pregnancies were brought to term. Conclusion: This study shows specifically that sperm DNA fragmentation among men in subfertile couples could be affected by abdominal fat, but improvement of lifestyle factor may correct this alteration. The effect of specific abdominal fat loss on sperm quality needs further investigation. The reduction of oxidative stress may be a contributing factor

    CD4+ T cell surface alpha enolase is lower in older adults

    Get PDF
    To identify novel cell ageing markers in order to gain insight into ageing mechanisms, we adopted membrane enrichment and comparison of the CD4+ T cell membrane proteome (purified by cell surface labelling using Sulfo-NHS-SS-Biotin reagent) between healthy young (n=9, 20-25y) and older (n=10; 50-70y) male adults. Following two-dimensional gel electrophoresis (2DE) to separate pooled membrane proteins in triplicates, the identity of protein spots with age-dependent differences (p1.4 fold difference) was determined using liquid chromatography-mass spectrometry (LC-MS/MS). Seventeen protein spot density differences (ten increased and seven decreased in the older adult group) were observed between young and older adults. From spot intensity analysis, CD4+ T cell surface α-enolase was decreased in expression by 1.5 fold in the older age group; this was verified by flow cytometry (n=22) and qPCR with significantly lower expression of cellular α-enolase mRNA and protein compared to young adult CD4+ T cells (p<0.05). In an independent age-matched case-control study, lower CD4+ T cell surface α-enolase expression was observed in age-matched patients with cardiovascular disease (p<0.05). An immune-modulatory role has been proposed for surface α-enolase and our findings of decreased expression suggest that deficits in surface α-enolase merit investigation in the context of immune dysfunction during ageing and vascular disease

    Oxi-DIGE: A novel proteomic approach for detecting and quantifying carbonylated proteins

    No full text
    Annual Meeting of the Society-for-Free-Radical-Research-Europe (SFRR-E), Paris, FRANCE, SEP 05-07, 2014International audienceno abstrac

    Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging

    No full text
    International audienceIncreased protein carbonyl content is a hallmark of cellular and organismal aging. Protein damage leading to the formation of carbonyl groups derives from direct oxidation of several amino acid side chains but can also derive through protein adducts formation with lipid peroxidation products and dicarbonyl glycating compounds. All these modifications have been implicated during oxidative stress, aging and age-related diseases. However, in most cases, the proteins targeted by these deleterious modifications as well as their consequences have not yet been clearly identified. Indeed, this is essential to determine whether and how these modified proteins are impacting on cellular function, on the development of the senescent phenotype and the pathogenesis of age-related diseases. In this context, protein modifications occurring during aging and upon oxidative stress as well as main proteomic methods for detecting, quantifying and identifying oxidized proteins are described. Relevant proteomics studies aimed at monitoring the extent of protein carbonylation and identifying the targeted proteins in the context of aging and oxidative stress are also presented. Proteomics approaches, i.e. fluorescent based 2D-gel electrophoresis and mass spectrometry methods, represent powerful tools for monitoring at the proteome level the extent of protein oxidative and related modifications and for identifying the targeted proteins. Biological significance Accumulation of damaged macromolecules, including oxidatively damaged (carbonylated) proteins, is a hallmark of cellular and organismal aging. Since protein carbonyls are the most commonly used markers of protein oxidation, different methods have been developed for the detection and quantification of carbonylated proteins. The identification of these protein targets is of valuable interest in order to understand the mechanisms by which damaged proteins accumulate and potentially affect cellular functions during oxidative stress, cellular senescence and/or aging in vivo. The specificity of hydrazide derivatives to carbonyl groups and the presence of a wide range of functional groups coupled to the hydrazide, allowed the design of novel strategies for the detection and quantification of carbonylated proteins. Of note is the importance of fluorescent probes for monitoring carbonylated proteins. Proteomics approaches, i.e. fluorescent based 2D-gel electrophoresis and mass spectrometry methods, represent powerful tools for monitoring at the proteome level the extent of protein oxidative and related modifications and for identifying the targeted proteins

    Proteome Modulation in H9c2 Cardiac Cells by microRNAs miR-378 and miR-378

    No full text
    International audienceMicroRNAs are a novel class of powerful endogenous regulators of gene expression. MiR-378 and miR-378* are localized in the first intron of the Ppargc1b gene that codes the transcriptional co-activator PGC-1. The latter regulates energy expenditure as well as mitochondrial biogenesis. The miR-378:miR-378* hairpin is highly expressed in cardiac cells. To better assess their role in cardiomyocytes, we identified miR-378 and miR-378* targets via a proteomic screen. We established H9c2 cellular models of overexpression of miR-378 and miR-378* and identified a total of 86 down-regulated proteins in the presence of either one of these miRs. Functional annotation clustering showed that miR-378 and miR-378* regulate related pathways in cardiomyocytes, including energy metabolism, notably glycolysis, cytoskeleton, notably actin filaments and muscle contraction. Using bioinformatics algorithms we found that 20 proteins were predicted as direct targets of the miRs. We validated eight of these targets by quantitative RT-PCR and luciferase reporter assay. We found that miR-378 targets lactate dehydrogenase A and impacts on cell proliferation and survival whereas miR-378* targets cytoskeleton proteins actin and vimentin. Proteins involved in endoplasmic reticulum stress response such as chaperone and/or calcium buffering proteins GRP78, PPIA (cyclophilin A), calumenin, and GMMPA involved in glycosylation are repressed by these miRs. Our results show that the miR-378/378* hairpin establishes a connection among energy metabolism, cytoskeleton remodeling, and endoplasmic reticulum function through post-transcriptional regulation of key proteins involved in theses pathways

    The Woody-Preferential Gene EgMYB88 Regulates the Biosynthesis of Phenylpropanoid-Derived Compounds in Wood

    Get PDF
    International audienceComparative phylogenetic analyses of the R2R3-MYB transcription factor family revealed that five subgroups were preferentially found in woody species and were totally absent from Brassicaceae and monocots (Soler et al., 2015). Here, we analyzed one of these subgroups (WPS-I) for which no gene had been yet characterized. Most Eucalyptus members of WPS-I are preferentially expressed in the vascular cambium, the secondary meristem responsible for tree radial growth. We focused on EgMYB88, which is the most specifically and highly expressed in vascular tissues, and showed that it behaves as a transcriptional activator in yeast. Then, we functionally characterized EgMYB88 in both transgenic Arabidopsis and poplar plants overexpressing either the native or the dominant repression form (fused to the Ethylene-responsive element binding factor-associated Amphiphilic Repression motif, EAR). The transgenic Arabidopsis lines had no phenotype whereas the poplar lines overexpressing EgMYB88 exhibited a substantial increase in the levels of the flavonoid catechin and of some salicinoid phenolic glycosides (salicortin, salireposide, and tremulacin), in agreement with the increase of the transcript levels of landmark biosynthetic genes. A change in the lignin structure (increase in the syringyl vs. guaiacyl, S/G ratio) was also observed. Poplar lines overexpressing the EgMYB88 dominant repression form did not show a strict opposite phenotype. The level of catechin was reduced, but the levels of the salicinoid phenolic glycosides and the S/G ratio remained unchanged. In addition, they showed a reduction in soluble oligolignols containing sinapyl p-hydroxybenzoate accompanied by a mild reduction of the insoluble lignin content. Altogether, these results suggest that EgMYB88, and more largely members of the WPS-I group, could control in cambium and in the first layers of differentiating xylem the biosynthesis of some phenylpropanoid-derived secondary metabolites including lignin
    corecore