7 research outputs found

    Low temperature delays the effects of ischemia in Bergmann glia and in cerebellar tissue swelling

    Get PDF
    Cerebral ischemia results in oxygen and glucose deprivation that most commonly occurs after a reduction or interruption in the blood supply to the brain. The consequences of cerebral ischemia are complex and involve the loss of metabolic ATP, excessive K+ and glutamate accumulation in the extracellular space, electrolyte imbalance, and brain edema formation. So far, several treatments have been proposed to alleviate ischemic damage, yet few are effective. Here, we focused on the neuroprotective role of lowering the temperature in ischemia mimicked by an episode of oxygen and glucose deprivation (OGD) in mouse cerebellar slices. Our results suggest that lowering the temperature of the extracellular ‘milieu’ delays both the increases in [K+]e and tissue swelling, two dreaded consequences of cerebellar ischemia. Moreover, radial glial cells (Bergmann glia) display morphological changes and membrane depolarizations that are markedly impeded by lowering the temperature. Overall, in this model of cerebellar ischemia, hypothermia reduces the deleterious homeostatic changes regulated by Bergmann glia

    A Light-Controlled Allosteric Modulator Unveils a Role for mGlu4 Receptors During Early Stages of Ischemia in the Rodent Cerebellar Cortex

    Get PDF
    Metabotropic glutamate receptors (mGlus) are G Protein coupled-receptors that modulate synaptic transmission and plasticity in the central nervous system. Some act as autoreceptors to control neurotransmitter release at excitatory synapses and have become attractive targets for drug therapy to treat certain neurological disorders. However, the high degree of sequence conservation around the glutamate binding site makes the development of subtype-specific orthosteric ligands difficult to achieve. This problem can be circumvented by designing molecules that target specific less well conserved allosteric sites. One such allosteric drug, the photo-switchable compound OptoGluNAM4.1, has been recently employed to reversibly inhibit the activity of metabotropic glutamate 4 (mGlu4) receptors in cell cultures and in vivo. We studied OptoGluNAM4.1 as a negative modulator of neurotransmission in rodent cerebellar slices at the parallel fiber – Purkinje cell synapse. Our data show that OptoGluNAM4.1 antagonizes pharmacological activation of mGlu4 receptors in a fully reversible and photo-controllable manner. In addition, for the first time, this new allosteric modulator allowed us to demonstrate that, in brain slices from the rodent cerebellar cortex, mGlu4 receptors are endogenously activated in excitotoxic conditions, such as the early phases of simulated cerebellar ischemia, which is associated with elevated levels of extracellular glutamate. These findings support OptoGluNAM4.1 as a promising new tool for unraveling the role of mGlu4 receptors in the central nervous system in physio-pathological conditions

    Impact d'un épisode ischémique sur la glie de Bergmann

    No full text
    Cerebral ischemia is characterized by partial or total interruption of the blood supply to the brain resulting in glucose and oxygen deprivation to brain cells. The series of cellular processes that are unleashed by cerebral ischemia are complex. The severe reduction in oxygen and glucose induces decreases in ATP production and dramatic changes in extracellular K concentration, pH of intracellular and extracellular space and lactate production. The disruption of energy metabolism in the ischemic tissue rapidly lead to membrane depolarisation and neurotransmitters are released into the extracellular space. In the cerebellum, the impact of an ischemic stress has been extensively studied in Purkinje cells, the only neuronal output of the cerebellar cortex. It has been shown that glutamate released from overexcited fibers and from reversal of glutamate transporters, is the principal cause of the dramatic, anoxic depolarization in Purkinje cells. However a detailed understanding of the astrocytic response to cerebellar ischemia and the potential influence of astrocyte to ischemia outcome is still lacking.Bergmann glia (BG) are radial gial cells that form networks of electrically coupled cells underling complex anatomical and functional interactions with the neurons of the cerebellar cortex. Using an in vitro model of cerebral ischemia, the oxygen and glucose deprivation (OGD), several basic features of astrocytic reaction to ischemia are analyzed. Patch clamp and calcium imaging experiments performed in cerebellar slices from adult mice revealed that BG respond to OGD with a progressive membrane depolarisation that is paralleled with a sustained cytosolic calcium increase. Double patch-clamp recordings between Purkinje neurons and BG reveal different responses to OGD in these cell types. Furthermore, we measured extracellular potassium concentration changes during OGD by using ion-sensitive microelectrodes. Our results indicate an important correlation between the BG membrane depolarisation and the extracellular K dynamics during OGD.L’ischĂ©mie cĂ©rĂ©brale est caractĂ©risĂ©e par une interruption totale ou partielle de l’apport sanguine au cerveau, conduisant Ă  une privation d’oxygĂšne et de glucose pour les cellules du cerveau. La sĂ©rie de processus cellulaires qui sont dĂ©clenchĂ©es par une ischĂ©mie cĂ©rĂ©brale sont nombreux et complexes. La rĂ©duction sĂ©vĂšre d’oxygĂšne et de glucose la diminution de la production d’ATP et un changement drastique de la concentration de K+, du pH intracellulaire et extracellulaire et de la production de lactate. La perturbation du mĂ©tabolisme Ă©nergĂ©tique au sein des tissus ischĂ©miĂ©s conduit rapidement Ă  la dĂ©polarisation membranaire et au relarguage de neurotransmetteurs dans le milieu extracellulaire. Dans le cervelet, l’impact d’un stress ischĂ©mique Ă  largement Ă©tĂ© Ă©tudiĂ© sur les cellules de Purkinje, seule voie de sortie neuronale du cortex cĂ©rĂ©belleux. Il a Ă©tĂ© montrĂ© que le glutamate, relarguĂ© par une surexcitation des fibres glutamatergique et par l’inversion des transporteurs du glutamate, est la cause principale de la dĂ©polarisation anoxique des cellules de Purkinje. Cependant, la comprĂ©hension de la rĂ©ponse astrocytaire et l’influence des astrocytes vis-Ă -vis de l’ischĂ©mie ne sont pas encore connu.La cellule de Bergmann est un astrocyte radiaire qui compose un rĂ©seau couplĂ© Ă©lectriquement, formant des interactions anatomiques et fonctionnelles complexes avec les neurones du cortex cĂ©rĂ©belleux. En utilisant un modĂšle in vitro d’ischĂ©mie cĂ©rĂ©brale, la privation d’oxygĂšne et de glucose (OGD), plusieurs caractĂ©ristiques de base de la rĂ©action astrocytaire Ă  l'ischĂ©mie sont analysĂ©s. Des expĂ©riences en patch clamp et d’imagerie calcique sont rĂ©alisĂ©es sur tranche de cervelet adulte rĂ©vĂ©lant la rĂ©ponse de la glie de Bergmann Ă  l’OGD par une dĂ©polarisation progressive de la membrane, avec en parallĂšle une augmentation de calcium cytosolique soutenue. L’enregistrement appariĂ© entre cellule de Purkinje et cellule de Bergmann rĂ©vĂšle des diffĂ©rences importantes de rĂ©ponse Ă  l’OGD entre ces deux types cellulaires. De plus, nous avons mesurĂ© les changements de la concentration de K+ extracellulaire durant l’OGD en utilisant des microĂ©lectrodes sensibles aux ions. Nos rĂ©sultats montrent une corrĂ©lation importante entre la dynamique du K+ extracellulaire et la dĂ©polarisation membranaire de la cellule de Bergmann au cours de l’OGD

    Impact of an Ischemic Episode on Bergmann Glial Cells

    No full text
    L’ischĂ©mie cĂ©rĂ©brale est caractĂ©risĂ©e par une interruption totale ou partielle de l’apport sanguine au cerveau, conduisant Ă  une privation d’oxygĂšne et de glucose pour les cellules du cerveau. La sĂ©rie de processus cellulaires qui sont dĂ©clenchĂ©es par une ischĂ©mie cĂ©rĂ©brale sont nombreux et complexes. La rĂ©duction sĂ©vĂšre d’oxygĂšne et de glucose la diminution de la production d’ATP et un changement drastique de la concentration de K+, du pH intracellulaire et extracellulaire et de la production de lactate. La perturbation du mĂ©tabolisme Ă©nergĂ©tique au sein des tissus ischĂ©miĂ©s conduit rapidement Ă  la dĂ©polarisation membranaire et au relarguage de neurotransmetteurs dans le milieu extracellulaire. Dans le cervelet, l’impact d’un stress ischĂ©mique Ă  largement Ă©tĂ© Ă©tudiĂ© sur les cellules de Purkinje, seule voie de sortie neuronale du cortex cĂ©rĂ©belleux. Il a Ă©tĂ© montrĂ© que le glutamate, relarguĂ© par une surexcitation des fibres glutamatergique et par l’inversion des transporteurs du glutamate, est la cause principale de la dĂ©polarisation anoxique des cellules de Purkinje. Cependant, la comprĂ©hension de la rĂ©ponse astrocytaire et l’influence des astrocytes vis-Ă -vis de l’ischĂ©mie ne sont pas encore connu.La cellule de Bergmann est un astrocyte radiaire qui compose un rĂ©seau couplĂ© Ă©lectriquement, formant des interactions anatomiques et fonctionnelles complexes avec les neurones du cortex cĂ©rĂ©belleux. En utilisant un modĂšle in vitro d’ischĂ©mie cĂ©rĂ©brale, la privation d’oxygĂšne et de glucose (OGD), plusieurs caractĂ©ristiques de base de la rĂ©action astrocytaire Ă  l'ischĂ©mie sont analysĂ©s. Des expĂ©riences en patch clamp et d’imagerie calcique sont rĂ©alisĂ©es sur tranche de cervelet adulte rĂ©vĂ©lant la rĂ©ponse de la glie de Bergmann Ă  l’OGD par une dĂ©polarisation progressive de la membrane, avec en parallĂšle une augmentation de calcium cytosolique soutenue. L’enregistrement appariĂ© entre cellule de Purkinje et cellule de Bergmann rĂ©vĂšle des diffĂ©rences importantes de rĂ©ponse Ă  l’OGD entre ces deux types cellulaires. De plus, nous avons mesurĂ© les changements de la concentration de K+ extracellulaire durant l’OGD en utilisant des microĂ©lectrodes sensibles aux ions. Nos rĂ©sultats montrent une corrĂ©lation importante entre la dynamique du K+ extracellulaire et la dĂ©polarisation membranaire de la cellule de Bergmann au cours de l’OGD.Cerebral ischemia is characterized by partial or total interruption of the blood supply to the brain resulting in glucose and oxygen deprivation to brain cells. The series of cellular processes that are unleashed by cerebral ischemia are complex. The severe reduction in oxygen and glucose induces decreases in ATP production and dramatic changes in extracellular K concentration, pH of intracellular and extracellular space and lactate production. The disruption of energy metabolism in the ischemic tissue rapidly lead to membrane depolarisation and neurotransmitters are released into the extracellular space. In the cerebellum, the impact of an ischemic stress has been extensively studied in Purkinje cells, the only neuronal output of the cerebellar cortex. It has been shown that glutamate released from overexcited fibers and from reversal of glutamate transporters, is the principal cause of the dramatic, anoxic depolarization in Purkinje cells. However a detailed understanding of the astrocytic response to cerebellar ischemia and the potential influence of astrocyte to ischemia outcome is still lacking.Bergmann glia (BG) are radial gial cells that form networks of electrically coupled cells underling complex anatomical and functional interactions with the neurons of the cerebellar cortex. Using an in vitro model of cerebral ischemia, the oxygen and glucose deprivation (OGD), several basic features of astrocytic reaction to ischemia are analyzed. Patch clamp and calcium imaging experiments performed in cerebellar slices from adult mice revealed that BG respond to OGD with a progressive membrane depolarisation that is paralleled with a sustained cytosolic calcium increase. Double patch-clamp recordings between Purkinje neurons and BG reveal different responses to OGD in these cell types. Furthermore, we measured extracellular potassium concentration changes during OGD by using ion-sensitive microelectrodes. Our results indicate an important correlation between the BG membrane depolarisation and the extracellular K dynamics during OGD

    Oxygen and Glucose Deprivation Induces Bergmann Glia Membrane Depolarization and Ca2+ Rises Mainly Mediated by K+ and ATP Increases in the Extracellular Space

    No full text
    During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD). Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts

    Cerebellar synapse properties and cerebellum-dependent motor and non-motor performance in Dp71-null mice

    No full text
    Recent emphasis has been placed on the role that cerebellar dysfunctions could have in the genesis of cognitive deficits in Duchenne muscular dystrophy (DMD). However, relevant genotype-phenotype analyses are missing to define whether cerebellar defects underlie the severe cases of intellectual deficiency that have been associated with genetic loss of the smallest product of the dmd gene, the Dp71 dystrophin. To determine for the first time whether Dp71 loss could affect cerebellar physiology and functions, we have used patch-clamp electrophysiological recordings in acute cerebellar slices and a cerebellum-dependent behavioral test battery addressing cerebellum-dependent motor and non-motor functions in Dp71-null transgenic mice. We found that Dp71 deficiency selectively enhances excitatory transmission at glutamatergic synapses formed by climbing fibers (CFs) on Purkinje neurons, but not at those formed by parallel fibers. Altered basal neurotransmission at CFs was associated with impairments in synaptic plasticity and clustering of the scaffolding postsynaptic density protein PSD-95. At the behavioral level, Dp71-null mice showed some improvements in motor coordination and were unimpaired for muscle force, static and dynamic equilibrium, motivation in high-motor demand and synchronization learning. Dp71-null mice displayed altered strategies in goal-oriented navigation tasks, however, suggesting a deficit in the cerebellum-dependent processing of the procedural components of spatial learning, which could contribute to the visuospatial deficits identified in this model. In all, the observed deficits suggest that Dp71 loss alters cerebellar synapse function and cerebellum-dependent navigation strategies without being detrimental for motor functions
    corecore