14 research outputs found

    Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer

    Get PDF
    The accumulation of senescent cells in the tumor microenvironment can drive tumorigenesis in a paracrine manner through the senescence-associated secretory phenotype (SASP). Using a new p16-FDR mouse line, we show that macrophages and endothelial cells are the predominant senescent cell types in murine KRAS-driven lung tumors. Through single cell transcriptomics, we identify a population of tumor-associated macrophages that express a unique array of pro-tumorigenic SASP factors and surface proteins and are also present in normal aged lungs. Genetic or senolytic ablation of senescent cells, or macrophage depletion, result in a significant decrease in tumor burden and increased survival in KRAS-driven lung cancer models. Moreover, we reveal the presence of macrophages with senescent features in human lung pre-malignant lesions, but not in adenocarcinomas. Taken together, our results have uncovered the important role of senescent macrophages in the initiation and progression of lung cancer, highlighting potential therapeutic avenues and cancer preventative strategies

    Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target

    Get PDF
    Adamantinomatous craniopharyngiomas (ACPs) are clinically challenging tumours, the majority of which have activating mutations in CTNNB1. They are histologically complex, showing cystic and solid components, the latter comprised of different morphological cell types (e.g. ÎČ-catenin-accumulating cluster cells and palisading epithelium), surrounded by a florid glial reaction with immune cells. Here, we have carried out RNA sequencing on 18 ACP samples and integrated these data with an existing ACP transcriptomic dataset. No studies so far have examined the patterns of gene expression within the different cellular compartments of the tumour. To achieve this goal, we have combined laser capture microdissection with computational analyses to reveal groups of genes that are associated with either epithelial tumour cells (clusters and palisading epithelium), glial tissue or immune infiltrate. We use these human ACP molecular signatures and RNA-Seq data from two ACP mouse models to reveal that cell clusters are molecularly analogous to the enamel knot, a critical signalling centre controlling normal tooth morphogenesis. Supporting this finding, we show that human cluster cells express high levels of several members of the FGF, TGFB and BMP families of secreted factors, which signal to neighbouring cells as evidenced by immunostaining against the phosphorylated proteins pERK1/2, pSMAD3 and pSMAD1/5/9 in both human and mouse ACP. We reveal that inhibiting the MAPK/ERK pathway with trametinib, a clinically approved MEK inhibitor, results in reduced proliferation and increased apoptosis in explant cultures of human and mouse ACP. Finally, we analyse a prominent molecular signature in the glial reactive tissue to characterise the inflammatory microenvironment and uncover the activation of inflammasomes in human ACP. We validate these results by immunostaining against immune cell markers, cytokine ELISA and proteome analysis in both solid tumour and cystic fluid from ACP patients. Our data support a new molecular paradigm for understanding ACP tumorigenesis as an aberrant mimic of natural tooth development and opens new therapeutic opportunities by revealing the activation of the MAPK/ERK and inflammasome pathways in human ACP. KEYWORDS: Craniopharyngioma; IL1-ÎČ; Inflammasome; MAPK/ERK pathway; Odontogenesis; Paracrine signalling; Trametini

    Cell Senescence in Neuropathology: a Focus on Neurodegeneration and Tumours

    No full text
    The study of cell senescence is a burgeoning field. Senescent cells can modify the cellular microenvironment through the secretion of a plethora of biologically active products referred to as the senescence‐associated secretory phenotype (SASP). The consequences of these paracrine signals can be either beneficial for tissue homeostasis, if senescent cells are properly cleared and SASP activation is transient, or result in organ dysfunction, when senescent cells accumulate within the tissues and SASP activation is persistent. Several studies have provided evidence for a role of senescence and SASP in promoting age‐related diseases or driving organismal ageing. The hype about senescence has been further amplified by the fact that a group of drugs, named senolytics, have been used to successfully ameliorate the burden of age‐related diseases and increase health and life span in mice. Ablation of senescent cells in the brain prevents disease progression and improve cognition in murine models of neurodegenerative conditions. The role of senescence in cancer has been more thoroughly investigated, and it is now accepted that senescence is a double‐edged sword that can paradoxically prevent or promote tumourigenesis in a context dependent manner. In addition, senescence induction followed by senolytic treatment is starting to emerge as a novel therapeutic avenue that could improve current anti‐cancer therapies and reduce tumour recurrence. In this review, we discuss recent findings supporting a role of cell senescence in the pathogenesis of neurodegenerative diseases and in brain tumours. A better understanding of senescence is likely to result in the development of novel and efficacious anti‐senescence therapies against these brain pathologies

    TRAIL-based therapy in pediatric bone tumors: how to overcome resistance

    No full text
    Osteosarcoma and Ewing’s sarcoma, the two most frequent malignant primary tumors preferentially arise in children and young adults, and have a poor prognosis. TRAIL represents a promising therapeutic approach for most cancers but in the case of primary bone tumors, osteosarcoma cell lines are highly resistant to this pro-apoptotic cytokine. In addition, another signaling pathway mediating cell proliferation and migration may be even activated in this subset of resistant cells leading to protumoral effect. Therapeutic perspectives are linked to possibility to overcome TRAIL resistance by combining other drugs with TRAIL or death receptors agonistic antibodies. We hypothesized that the bone microenvironment may provide a favorable niche for TRAIL resistance that might be targeted by new resensitizing agents

    L-MTP-PE and zoledronic acid combination in osteosarcoma: preclinical evidence of positive therapeutic combination for clinical transfer

    No full text
    International audienceOsteosarcoma, the most frequent malignant primary bone tumor in pediatric patients is characterized by osteolysis promoting tumor growth. Lung metastasis is the major bad prognosis factor of this disease. Zoledronic Acid (ZA), a potent inhibitor of bone resorption is currently evaluated in phase III randomized studies in Europe for the treatment of osteosarcoma and Ewing sarcoma. The beneficial effect of the liposomal form of Muramyl-TriPep-tide-Phosphatidyl Ethanolamine (L-mifamurtide, MEPACTŸ), an activator of macrophage populations has been demonstrated to eradicate lung metastatic foci in osteosarcoma. The objective of this study was to evaluate the potential therapeutic benefit and the safety of the ZA and L-mifamurtide combination in preclinical models of osteosarcoma, as a prerequisite before translation to patients. The effects of ZA (100 ”g/kg) and L-mifamurtide (1 mg/kg) were investigated in vivo in xenogeneic and syngeneic mice models of osteosarcoma, at clinical (tumor proliferation, spontaneous lung metastases development), radiological (bone microarchitecture by microCT analysis), biological and histological levels. No interference between the two drugs could be observed on ZA-induced bone protection and on L-mifamurtide-induced inhibition of lung metastasis development. Unexpectedly, ZA and L-mifamurtide association induced an additional and in some cases synergistic inhibition of primary tumor progression. L-mifamurtide has no effect on tumor proliferation in vitro or in vivo, and macrophage population was not affected at the tumor site whatever the treatment. This study evidenced for the first time a significant inhibition of primary osteosarcoma progression when both drugs are combined. This result constitutes a first proof-of-principle for clinical application in osteosarcoma patients

    TRAIL-Based Therapies Efficacy in Pediatric Bone Tumors Models Is Modulated by TRAIL Non-Apoptotic Pathway Activation via RIPK1 Recruitment

    No full text
    International audienceDespite advances in clinical management, osteosarcoma and Ewing sarcoma, the two most frequent malignant primary bone tumors at pediatric age, still have a poor prognosis for high-risk patients (i.e., relapsed or metastatic disease). Triggering a TRAIL pro-apoptotic pathway represents a promising therapeutic approach, but previous studies have described resistance mechanisms that could explain the declining interest of such an approach in clinical trials. In this study, eight relevant human cell lines were used to represent the heterogeneity of the response to the TRAIL pro-apoptotic effect in pediatric bone tumors and two cell-derived xenograft models were developed, originating from a sensitive and a resistant cell line. The DR5 agonist antibody AMG655 (Conatumumab) was selected as an example of TRAIL-based therapy. In both TRAIL-sensitive and TRAIL-resistant cell lines, two signaling pathways were activated following AMG655 treatment, the canonical extrinsic apoptotic pathway and a non-apoptotic pathway, involving the recruitment of RIPK1 on the DR5 protein complex, activating both pro-survival and pro-proliferative effectors. However, the resulting balance of these two pathways was different, leading to apoptosis only in sensitive cells. In vivo, AMG655 treatment reduced tumor development of the sensitive model but accelerated tumor growth of the resistant one. We proposed two independent strategies to overcome this issue: (1) a proof-of-concept targeting of RIPK1 by shRNA approach and (2) the use of a novel highly-potent TRAIL-receptor agonist; both shifting the balance in favor of apoptosis. These observations are paving the way to resurrect TRAIL-based therapies in pediatric bone tumors to help predict the response to treatment, and propose a relevant adjuvant strategy for future therapeutic development

    In vitro and in vivo discrepancy in inducing apoptosis by mesenchymal stromal cells delivering membrane-bound tumor necrosis factor–related apoptosis inducing ligand in osteosarcoma pre-clinical models

    No full text
    International audienceIn vitro and in vivo discrepancy in inducing apoptosis by mesenchymal stromal cells delivering membrane-bound tumor necrosis factorÀrelated apoptosis inducing ligand in osteosarcoma pre-clinical models Abstract Background: Osteosarcoma (OS) is the most frequent pediatric malignant bone tumor. OS patients have not seen any major therapeutic progress in the last 30 years, in particular in the case of metastatic disease, which requires new therapeutic strategies. The pro-apoptotic cytokine Tumor necrosis factor (TNF)ÀRelated Apoptosis Inducing Ligand (TRAIL) can selectively kill tumor cells while sparing normal cells, making it a promising therapeutic tool in several types of cancer. However, many OS cell lines appear resistant to recombinant human (rh)TRAIL-induced apoptosis. We, therefore, hypothesized that TRAIL presentation at the membrane level of carrier cells might overcome this resistance and trigger apoptosis. Methods: To address this, human adipose mesenchymal stromal cells (MSCs) transfected in a stable manner to express membrane-bound full-length human TRAIL (mbTRAIL) were co-cultured with several human OS cell lines. Results: This induced apoptosis by cell-to-cell contact even in cell lines initially resistant to rhTRAIL. In contrast, mbTRAIL delivered by MSCs was not able to counteract tumor progression in this OS orthotopic model. Discussion: This was partly due to the fact that MSCs showed a potential to support tumor development. Moreover, the expression of mbTRAIL did not show caspase activation in adjacent tumor cells

    A Functional, New Short Isoform of Death Receptor 4 in Ewing's Sarcoma Cell Lines May be Involved in TRAIL Sensitivity/Resistance Mechanisms

    No full text
    Ewing's sarcoma (ES) is a high-grade neoplasm arising in bones of children and adolescents. Survival rate decreases from greater than 50% to only 20% after 5 years for patients not responding to treatment or presenting metastases at diagnosis. TRAIL, which has strong antitumoral activity, is a promising therapeutic candidate. To address TRAIL sensitivity, 7 human ES cell lines were used. Cell viability experiments [3â€Č[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro-)benzene sulfonic acid hydrate (XTT) assay] showed that 4 of the 7 ES cell lines were resistant to TRAIL. Western blotting and flow cytometry analyses revealed that DR5 was uniformly expressed by all ES cell lines, whereas DR4 levels were higher in sensitive cell lines. In TRAIL-sensitive TC-71 cells, knockdown of TNFRSF10A/DR4 by short hairpin RNA (shRNA) was associated with a loss of sensitivity to TRAIL, in spite of DR5 presence. Interestingly, we identified a new transcript variant that results from an alternative splicing and encodes a 310–amino acid protein which corresponds to the 468 aa of DR4 original isoform but truncated of aa 11 to 168 within the extracellular TRAIL-binding domain. According to modeling studies, the contact of this new DR4 isoform (bDR4) with TRAIL seemed largely preserved. The overexpression of bDR4 in a TRAIL-resistant cell line restored TRAIL sensitivity. TRAIL resensitization was also observed after c-FLIP knockdown by shRNA in two TRAIL-resistant cell lines, as shown by XTT assay and caspase-3 assay. The results presented in this study showed that DR4, both as the complete form or as its new short isoform, is involved in TRAIL sensitivity in ES. Mol Cancer Res; 10(3); 336–46. ©2012 AACR

    RF Power Test of the Rebuncher for Saraf-Linac

    No full text
    International audienceThree normal conducting rebunchers will be installed at the Medium Energy Beam Transport (MEBT) of the SARAF-LINAC phase II [saraf]. The MEBT line is designed to follow a 1.3 MeV/u RFQ, is about 5 m long, and contains three 176 MHz rebunchers providing a field integral of 10⁔ kV. CEA is in charge of the design and fabrication of the Cu plated stainless steel, 3-gap rebuncher. The high power tests and RF conditioning have been successfully performed at the CEA Saclay on the first cavity. A solid state power amplifier, which has been developed by SNRC and has been used for the RF tests. The cavity has shown a good performance according to calculations, regarding the dissipated power, peak temperatures and coupling factor. RF conditioning was started with a duty cycle of 1\% and increased gradually until continuous wave (CW), which is the nominal working mode in SARAF-LINAC
    corecore