32 research outputs found

    Experimental assessment of CO2-mineral-toxic ion interactions in a simplified freshwater aquifer: Implications for CO2 leakage from deep geological storage

    Get PDF
    International audienceThe possible intrusion of CO2 into a given freshwater aquifer due to leakage from deep geological storage involves a decrease in pH, which has been directly associated with the remobilization of hazardous trace elements via mineral dissolution and/or via desorption processes. In an effort to evaluate the potential risks to potable water quality, the present study is devoted to experimental investigation of the effects of CO2 intrusion on the mobility of toxic ions in simplified equilibrated aquifers. We demonstrate that remobilization of trace elements by CO2 intrusion is not a universal physicochemical effect. In fact goethite and calcite, two minerals frequently found in aquifers, could successfully prevent the remobilization of adsorbed Cu(II), Cd(II), Se(IV) and As(V) if CO2 is intruded into a drinking water aquifer. Furthermore, a decrease in pH resulting from CO2 intrusion could reactivate the adsorption of Se(IV) and As(V) if goethite and calcite are sufficiently available in underground layers. Our results also suggest that adsorption of cadmium and copper could be promoted by calcite dissolution. These adsorbed ions on calcite are not remobilized when CO2 is intruded into the system, but it intensifies calcite dissolution. On the other hand, arsenite As(III) is significantly adsorbed on goethite, but is partially remobilized by CO2 intrusion

    Simultaneous precipitation of magnesite and lizardite from hydrothermal alteration of olivine under high-carbonate alkalinity

    Get PDF
    13 pagesInternational audienceThe present study reports original experiments in order to investigate the simultaneous serpentinization and carbonation of olivine with relevance in Earth systems (e.g. functioning of hydrothermal fields) or in engineered systems (e.g. ex-situ and in-situ mineral sequestration of CO2). For this case, specific experimental conditions were examined (200°C, saturated vapor pressure ≈ 16bar, solution/solid weight ratio = 15, olivine grain size < 30”m and high-carbonate alkalinity ≈ 1M NaHCO3). Under these conditions, competitive precipitation of magnesite and serpentine (preferentially lizardite type) were clearly determined by using conventional analytic tools (XRD, FESEM, FTIR and TGA); excluding the fate of the iron initially contained in olivine, the alteration reaction for olivine under high-carbonate alkalinity can be expressed as follows: 2〖Mg〗_2 SiO_4+2H_2 O+H〖CO〗_3^-→Mg〖CO〗_3+〖Mg〗_3 〖Si〗_2 O_5 〖(OH)〗_4+〖OH〗^- This reaction mechanism implied a dissolution process, releasing Mg and Si ions into solution until supersaturation of solution with respect to magnesite and/or serpentine. The released iron contained in the olivine has not implied any precipitation of iron oxides or (oxy)hydroxides; in fact, the released iron was partially oxidized (about 50%) via a simple reduction of water (2〖Fe〗^(2+)+〖2H〗_2 O→2〖Fe〗^(3+)+H_2+2〖OH〗^-). In this way, the released iron was incorporated in serpentine (Fe(II) and Fe(III)) and in magnesite (Fe(II). This latter was clearly determined by FESEM/EDS chemical analysis on the single magnesite crystals. The nucleation and epitaxial growth processes at the olivine-fluid interfaces cannot be excluded in our investigated system. The experimental kinetic data fitted by using a kinetic pseudo-second-order model have revealed a retarding process of serpentine formation with respect to magnesite (about three times slower); in fact, the magnesite seems to reach an apparent stabilization after about 20 days of reaction while the serpentine follows a progressive slower evolution. We assumed that the magnesite has reached a fast apparent equilibrium with solution because the available carbonate species are not renewed from fluid phase as typically constrained in aqueous carbonation experiments where a given CO2 pressure is imposed in the system. On the other hand, the reactivity of serpentinized olivine (chrysotile+brucite+small amount of residual olivine) and high-purity chrysotile at the same above investigated conditions; and the olivine serpentinization in initial acid pH ≈ 0.66 are also reported as complementary information in this study. These novel experimental results concerning simultaneous serpentinization and aqueous carbonation of olivine expand the thermodynamic conditions where serpentine and magnesite can simultaneously precipitate; this could contribute to a better understanding of fluid-rock interactions in natural active hydrothermal fields on Earth

    Sequestration of Fluid-mobile-elements during experimental serpentinization process under alkaline condition.

    No full text
    La rĂ©action de serpentinisation rĂ©sulte de l’interaction de l’eau de mer, ou de fluides hydrothermaux avec les roches mantelliques. Elle engendre des changements des propriĂ©tĂ©s chimiques de la lithosphĂšre ocĂ©anique, avec notamment un enrichissement en Ă©lĂ©ments mobiles (ex. As, Sb, Li, Cs, Pb, et B). Ces Ă©lĂ©ments sont importants en sciences de la terre car ce sont des traceurs gĂ©ochimiques des interactions fluides-roches depuis la ride ocĂ©anique jusqu’aux zones de subduction. Ce travail de thĂšse a pour but de caractĂ©riser le partitionnement de certains Ă©lĂ©ments mobiles entre un fluide et la serpentine de maniĂšre expĂ©rimentale. Pour cela, j’ai dĂ©veloppĂ© deux protocoles expĂ©rimentaux en condition alcaline. Le premier, consiste en la synthĂšse de chrysotile Ă  partir d’un gel Ă  la stoechiomĂ©trie de la serpentine, Ă  300 °C et Psat. Pour le second protocole, la serpentine est obtenue par altĂ©ration de grains d’olivine San Carlos (granulomĂ©trie : 56 ”m) Ă  200 °C (Psat) pour 1M de NaOH et en prĂ©sence de carbonate (HCO3-). La minĂ©ralogie des produits expĂ©rimentaux ainsi que leurs abondances ont Ă©tĂ© dĂ©terminĂ©es par diffraction des rayons-X, spectroscopie infrarouge et analyse thermogravimĂ©trique. Les propriĂ©tĂ©s texturales ont Ă©tĂ© caractĂ©risĂ©es par microscopie Ă©lectronique Ă  balayage et Ă  transmission haute rĂ©solution. La composition du produit solide a Ă©tĂ© mesurĂ©e par spectromĂ©trie de masse et analyse par microsonde-Ă©lectronique et l’état d’oxydo-rĂ©duction du fer a Ă©tĂ© dĂ©terminĂ© par analyses Mössbauer. Des analyses d’absorption des rayons-X (XAS) ont Ă©tĂ© effectuĂ©es afin d’analyser la structure locale de l’antimoine et de l’arsenic. La combinaison de ces techniques analytiques a permis de montrer que la synthĂšse de chrysotile est effective aprĂšs seulement 8 heures de rĂ©action. A 200°C, l’olivine est remplacĂ©e (pseudomorphose) par le chrysotile et la brucite. Le remplacement est total aprĂšs 1 mois (<30 ”m) et 3 mois (30 et 56 ”m). En prĂ©sence de carbonate, l’altĂ©ration de l’olivine est caractĂ©risĂ©e par une cinĂ©tique plus lente et est contrĂŽlĂ©e par la prĂ©cipitation de la magnĂ©site et de la lizardite.En reprenant les 2 protocoles expĂ©rimentaux de synthĂšse de chrysotile (1M NaOH), et en dopant le fluide en un Ă©lĂ©ment trace (Li, As, Cs, Sb et B) le partitionnement des Ă©lĂ©ments mobiles a pu ĂȘtre Ă©tudiĂ©. Le coefficient de partage solide-fluide (KD) a pu ĂȘtre dĂ©fini pour chaque Ă©lĂ©ment durant la synthĂšse du chrysotile Ă  300 °C en modĂ©lisant nos rĂ©sultats suivant l’équation de Langmuir (concentrations en solution de 5 Ă  1000 ”g g-1). La sĂ©quence obtenue pour les coefficients de partage est la suivante : 0.5<B < As < Li < Cs < Sb<9. En prĂ©sence de lithium, d’arsenic et d’antimoine, la morphologie du chrysotile atteste d’une croissance radiale. En revanche, le bore favorise une croissance en longueur du chrysotile perpendiculaire Ă  l’axe c. Un mĂ©canisme d’adsorption contrĂŽle principalement la sĂ©questration des Ă©lĂ©ments mobiles par le chrysotile comme l’indiquent les rĂ©sultats d’absorption des rayons-X sur l’arsenic et l’antimoine. Lors de l’altĂ©ration des olivines, la sĂ©questration des Ă©lĂ©ments trace est hĂ©tĂ©rogĂšne et le changement des conditions d’oxydo-rĂ©duction du systĂšme durant la rĂ©action de serpentinisation explique les changements dans la sĂ©questration de l’antimoine d’abord adsorbĂ© sous sa forme pentavalente puis incorporĂ© sous sa forme trivalente par des phases secondaires. MĂȘme en faible concentration en solution (200 ”g g-1), le lithium a un fort pouvoir catalytique sur la rĂ©action de serpentinisation de l’olivine Ă  200 °C.En perspective plusieurs expĂ©riences haute pression et tempĂ©rature (450 °C et 1-4 kbar) ont Ă©tĂ© rĂ©alisĂ©es afin de mieux comprendre le comportement des Ă©lĂ©ments traces durant les transitions de phase et la dĂ©stabilisation de la serpentine en contexte de subduction. Les rĂ©sultats prĂ©liminaires indiquent que la prĂ©sence de ces Ă©lĂ©ments traces a un rĂŽle trĂšs important sur la stabilitĂ© du chrysotile.Serpentinization reaction is the result of the interaction of seawater with mantle rocks especially at slow-spreading ridges. The formation of serpentinite during this alteration reaction changes the physico-chemical properties of the oceanic lithosphere and induces an enrichment in Fluid-mobile elements (FME: e.g. As, Sb, Li, Cs, Pb and B) compared to primary minerals. These elements are efficient geochemical tracers reflecting mantle hydration from the oceanic ridge to subduction environments. In this context, there is a lack of data concerning the partitioning and sequestration processes of FME between serpentine and fluids. The aim of this thesis is to determine fluid/serpentine partition coefficients of these elements as well as their effects on serpentine formation (reaction mechanism and kinetics, textural properties etc.). To achieve this goal, serpentine has been synthesized under highly alkaline hydrothermal conditions using two distinct protocols. Experimental-products were characterized using X-ray powder diffraction (XRPD), Fourier Transform Infra-Red spectroscopy (FTIR), N2 sorption isotherms, ThermoGravimetric Analyses (TGA), Field Emission gun Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), X-ray Absorption Spectroscopy (XAS) and Mössbauer Spectroscopy. The first protocol consists in chrysotile synthesis from H2SiO3 and MgCl2 at 300 °C using batch and semi-continuous experiments. With this approach, we were able to chrarcterized chrysotile nanotubes nucleation and growth processes. In the second protocol, we investigated olivine serpentinization reaction under high hydroxyl-alkalinity or high carbonate-alkalinity at 200 °C. We note the efficiency of serpentine formation under high alkaline conditions in the both protocols and the significant effect of the carbonate component on the serpentinization processes and crystal growth rates. The serpentinization of olivine under alkaline conditions induces the oxidation of a large part of iron trapped by brucite.Replacement is total after 1 month (<30 ”m) and 3 month (30-56 ”m). The presence of a carbonate component induces a lower reaction kinetic and is characterized by the co-precipitation of magnesite and lizardite.Based on these results, we chose favorable conditions in order to study FME (Li, As, Cs, Sb and B) sequestration. Solid-liquid partitioning for each FME was investigated during chrysotile synthesis at 300°C. Experimental results were modeled using the Langmuir equation and the role of each element on chrysotile textural properties was investigated. In addition, we report new results concerning the sequestration and the distribution of the trace elements during olivine replacement by serpentine and brucite. We highlight that Li act as a catalyst during olivine serpentinisation. Moreover, from XAS measurements, we indicate that Sb and As sequestration is dominated by adsorption mechanism. The precipitation of secondary As- and Sb-bearing phases was also revealed by Electron Microprobe X-ray mapping. Finally, Sb-trapping within chrysotile tubes was also suspected by HRTEM measurements. The changes of redox conditions during serpentinisation induce a change of Sb sequestration mechanism and the precipitation of Sb-bearing phases. In addition, we investigate the partitioning of FME at higher pressure (1-4 kbar) and temperature (450 °C). This pilot study brings promising results regarding the behavior of trace elements during serpentine destabilization (deep lithosphere or subduction contexts) and on the non-negligible role of trace elements on the stability of chrysotile

    Séquestration des éléments mobiles durant la serpentinisation expérimentale en condition alcaline

    Get PDF
    Serpentinization reaction is the result of the interaction of seawater with mantle rocks especially at slow-spreading ridges. The formation of serpentinite during this alteration reaction changes the physico-chemical properties of the oceanic lithosphere and induces an enrichment in Fluid-mobile elements (FME: e.g. As, Sb, Li, Cs, Pb and B) compared to primary minerals. These elements are efficient geochemical tracers reflecting mantle hydration from the oceanic ridge to subduction environments. In this context, there is a lack of data concerning the partitioning and sequestration processes of FME between serpentine and fluids. The aim of this thesis is to determine fluid/serpentine partition coefficients of these elements as well as their effects on serpentine formation (reaction mechanism and kinetics, textural properties etc.). To achieve this goal, serpentine has been synthesized under highly alkaline hydrothermal conditions using two distinct protocols. Experimental-products were characterized using X-ray powder diffraction (XRPD), Fourier Transform Infra-Red spectroscopy (FTIR), N2 sorption isotherms, ThermoGravimetric Analyses (TGA), Field Emission gun Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), X-ray Absorption Spectroscopy (XAS) and Mössbauer Spectroscopy. The first protocol consists in chrysotile synthesis from H2SiO3 and MgCl2 at 300 °C using batch and semi-continuous experiments. With this approach, we were able to chrarcterized chrysotile nanotubes nucleation and growth processes. In the second protocol, we investigated olivine serpentinization reaction under high hydroxyl-alkalinity or high carbonate-alkalinity at 200 °C. We note the efficiency of serpentine formation under high alkaline conditions in the both protocols and the significant effect of the carbonate component on the serpentinization processes and crystal growth rates. The serpentinization of olivine under alkaline conditions induces the oxidation of a large part of iron trapped by brucite.Replacement is total after 1 month (56 ”m) Ă  200 °C (Psat) pour 1M de NaOH et en prĂ©sence de carbonate (HCO3-). La minĂ©ralogie des produits expĂ©rimentaux ainsi que leurs abondances ont Ă©tĂ© dĂ©terminĂ©es par diffraction des rayons-X, spectroscopie infrarouge et analyse thermogravimĂ©trique. Les propriĂ©tĂ©s texturales ont Ă©tĂ© caractĂ©risĂ©es par microscopie Ă©lectronique Ă  balayage et Ă  transmission haute rĂ©solution. La composition du produit solide a Ă©tĂ© mesurĂ©e par spectromĂ©trie de masse et analyse par microsonde-Ă©lectronique et l’état d’oxydo-rĂ©duction du fer a Ă©tĂ© dĂ©terminĂ© par analyses Mössbauer. Des analyses d’absorption des rayons-X (XAS) ont Ă©tĂ© effectuĂ©es afin d’analyser la structure locale de l’antimoine et de l’arsenic. La combinaison de ces techniques analytiques a permis de montrer que la synthĂšse de chrysotile est effective aprĂšs seulement 8 heures de rĂ©action. A 200°C, l’olivine est remplacĂ©e (pseudomorphose) par le chrysotile et la brucite. Le remplacement est total aprĂšs 1 mois (<30 ”m) et 3 mois (30 et 56 ”m). En prĂ©sence de carbonate, l’altĂ©ration de l’olivine est caractĂ©risĂ©e par une cinĂ©tique plus lente et est contrĂŽlĂ©e par la prĂ©cipitation de la magnĂ©site et de la lizardite.En reprenant les 2 protocoles expĂ©rimentaux de synthĂšse de chrysotile (1M NaOH), et en dopant le fluide en un Ă©lĂ©ment trace (Li, As, Cs, Sb et B) le partitionnement des Ă©lĂ©ments mobiles a pu ĂȘtre Ă©tudiĂ©. Le coefficient de partage solide-fluide (KD) a pu ĂȘtre dĂ©fini pour chaque Ă©lĂ©ment durant la synthĂšse du chrysotile Ă  300 °C en modĂ©lisant nos rĂ©sultats suivant l’équation de Langmuir (concentrations en solution de 5 Ă  1000 ”g g-1). La sĂ©quence obtenue pour les coefficients de partage est la suivante : 0.5<B < As < Li < Cs < Sb<9. En prĂ©sence de lithium, d’arsenic et d’antimoine, la morphologie du chrysotile atteste d’une croissance radiale. En revanche, le bore favorise une croissance en longueur du chrysotile perpendiculaire Ă  l’axe c. Un mĂ©canisme d’adsorption contrĂŽle principalement la sĂ©questration des Ă©lĂ©ments mobiles par le chrysotile comme l’indiquent les rĂ©sultats d’absorption des rayons-X sur l’arsenic et l’antimoine. Lors de l’altĂ©ration des olivines, la sĂ©questration des Ă©lĂ©ments trace est hĂ©tĂ©rogĂšne et le changement des conditions d’oxydo-rĂ©duction du systĂšme durant la rĂ©action de serpentinisation explique les changements dans la sĂ©questration de l’antimoine d’abord adsorbĂ© sous sa forme pentavalente puis incorporĂ© sous sa forme trivalente par des phases secondaires. MĂȘme en faible concentration en solution (200 ”g g-1), le lithium a un fort pouvoir catalytique sur la rĂ©action de serpentinisation de l’olivine Ă  200 °C.En perspective plusieurs expĂ©riences haute pression et tempĂ©rature (450 °C et 1-4 kbar) ont Ă©tĂ© rĂ©alisĂ©es afin de mieux comprendre le comportement des Ă©lĂ©ments traces durant les transitions de phase et la dĂ©stabilisation de la serpentine en contexte de subduction. Les rĂ©sultats prĂ©liminaires indiquent que la prĂ©sence de ces Ă©lĂ©ments traces a un rĂŽle trĂšs important sur la stabilitĂ© du chrysotile

    Fossil oceanic core complexes in the Alps. New field, geochemical and isotopic constraints from the Tethyan Aiguilles Rouges Ophiolite (Val d’HĂ©rens, Western Alps, Switzerland)

    Get PDF
    International audienceAbstract Exhumation of basement rocks on the seafloor is a worldwide feature along passive continental margins and (ultra-) slow-spreading environments, documented by dredging, drilling or direct observations by diving expeditions. Complementary observations from exhumed ophiolites in the Alps allow for a better understanding of the underlying processes. The Aiguilles Rouges ophiolitic units (Val d’HĂ©rens, Switzerland) are composed of kilometre-scale remnants of laterally segmented oceanic lithosphere only weakly affected by Alpine metamorphism (greenschist facies, Raman thermometry on graphite: 370–380 °C) and deformation. Geometries and basement-cover sequences comparable to the ones recognized in actual (ultra-) slow-spreading environments were observed, involving exhumed serpentinized and carbonatized peridotites, gabbros, pillow basalts and tectono-sedimentary cover rocks. One remarkable feature is the presence of a kilometric gabbroic complex displaying preserved magmatic minerals, textures and crosscutting relationships between the host gabbro and intruding diabase, hornblende-bearing dikelets or plagiogranite. The bulk major and trace element chemistry of mafic rocks is typical of N-MORB magmatism (Ce N /Yb N : 0.42–1.15). This is supported by in-situ isotopic signatures of magmatic zircons (ΔHf = + 13 ± 0.6) and apatites (ΔNd = + 8.5 ± 0.8), determined for gabbros and plagiogranites. In-situ U–Pb dating was performed on zircons by laser ablation-ICP-MS, providing ages of 154.9 ± 2.6 Ma and 155.5 ± 2.8 Ma, which are among the youngest for oceanic gabbros in the Alps. Our study suggests that the former Aiguilles Rouges domain was characterized by tectonism and magmatism resembling present-day (ultra-) slow-spreading seafloor. It also suggests that the Tethyan lithosphere is laterally segmented, with punctuated magmatism such as the Aiguilles Rouges gabbros and carbonated ultramafic seafloor covered by basalts and Jurassic tectono-sedimentary deposits

    Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: A LA-ICPMS study of the Lanzo ultramafic massif (Western Alps)

    No full text
    International audienceSerpentinites are one of the major components of the oceanic lithosphere and are stable in the slab and the mantle wedge up to 100-150 km depth in subduction zones. During oceanic mantle hydration and alteration, they trap trace and fluid mobile (FME: B, Li, As, Sb, Rb, Ba, Cs, Sr, U and Pb) elements that participate to elemental transfer occurring between the dehydrating slab and the mantle wedge in subduction context. The Lanzo massif is an eclogitized oceanic lithosphere that preserved its oceanic structure and recorded different steps of serpentinization/de-serpentinization from oceanic lizardite to prograde antigorite in subduction context, up to its dehydration and secondary olivine crystallization, and finally retrograde antigorite during massif exhumation. It constitutes a suitable place to study trace element behavior during serpentinization/de-serpentinization processes and associated chemical transfers between the different envelopes of the oceanic lithosphere and the mantle wedge. Geochemical analyses of serpentine and associated minerals show that the serpentinization/de-serpentinization of the Lanzo massif took place in a relatively closed system without significant trace element transfer between the different parts of the oceanic lithosphere. In the deeper part of the lithosphere, from the slightly serpentinized mantle peridotites (SSP, 90% serpentinization). In that zone, the alpine deformation enhances the mobility of trace elements and permits their redistribution and the homogenization of antigorite composition at massif scale. Locally, in the SSP and MS, the crystallization of metamorphic veins of ~ 1-2 m corresponds to channelized fluid flows that allowed fluid transfers - and thereby trace elements - to longer distance. The successive crystallizations of antigorite and then olivine are accompanied by a diminution of some FME (B, Li, As, Sb, Ba, Rb) and Eu contents attesting that these elements are removed from slab to mantle wedge during subduction
    corecore