39 research outputs found

    Inflammation, glucose, and vascular cell damage: The role of the pentose phosphate pathway

    Full text link
    Background: Hyperglycemia is acknowledged as a pro-inflammatory condition and a major cause of vascular damage. Nevertheless, we have previously described that high glucose only promotes inflammation in human vascular cells previously primed with pro-inflammatory stimuli, such as the cytokine interleukin (IL)1β. Here, we aimed to identify the cellular mechanisms by which high glucose exacerbates the vascular inflammation induced by IL1β. Methods: Cultured human aortic smooth muscle cells (HASMC) and isolated rat mesenteric microvessels were treated with IL1β in medium containing 5.5-22 mmol/L glucose. Glucose uptake and consumption, lactate production, GLUT1 levels, NADPH oxidase activity and inflammatory signalling (nuclear factor-ΚB activation and inducible nitric oxide synthase expression) were measured in HASMC, while endothelium-dependent relaxations to acetylcholine were determined in rat microvessels. Pharmacological inhibition of IL1 receptors, NADPH oxidase and glucose-6-phosphate dehydrogenase (G6PD), as well as silencing of G6PD, were also performed. Moreover, the pentose phosphate pathway (PPP) activity and the levels of reduced glutathione were determined. Results: We found that excess glucose uptake in HASMC cultured in 22 mM glucose only occurred following activation with IL1β. However, the simple entry of glucose was not enough to be deleterious since over-expression of the glucose transporter GLUT1 or increased glucose uptake following inhibition of mitochondrial respiration by sodium azide was not sufficient to trigger inflammatory mechanisms. In fact, besides allowing glucose entry, IL1β activated the PPP, thus permitting some of the excess glucose to be metabolized via this route. This in turn led to an over-activation NADPH oxidase, resulting in increased generation of free radicals and the subsequent downstream pro-inflammatory signalling. Moreover, in rat mesenteric microvessels high glucose incubation enhanced the endothelial dysfunction induced by IL1β by a mechanism which was abrogated by the inhibition of the PPP. Conclusions: A pro-inflammatory stimulus like IL1β transforms excess glucose into a vascular deleterious agent by causing an increase in glucose uptake and its subsequent diversion into the PPP, promoting the pro-oxidant conditions required for the exacerbation of pro-oxidant and pro-inflammatory pathways. We propose that over-activation of the PPP is a crucial mechanism for the vascular damage associated to hyperglycemia.This study was supported with grants from Plan Nacional de I+ D (SAF2014-52762-R), Sociedad Española de Farmacología-Almirall, Fundación Eugenio Rodríguez Pascual, and ISCIII (RETICEF-R12/0043/0021) and Junta de Castilla y León (SA003U13). LV was supported by a fellowship from CONACYT (Mexico). TR is the recipient of a Marie Curie Intra-European Fellowship (2012-IEF-328793 ADDIO

    DPP4 and ACE2 in diabetes and COVID-19: Therapeutic targets for cardiovascular complications?

    Full text link
    COVID-19 outbreak, caused by severe acute respiratory syndrome (SARS)-CoV-2 coronavirus has become an urgent health and economic challenge. Diabetes is a risk factor for severity and mortality of COVID-19. Recent studies support that COVID-19 has effects beyond the respiratory tract, with vascular complications arising as relevant factors worsening its prognosis, then making patients with previous vascular disease more prone to severity or fatal outcome. Angiotensin-II converting enzime-2 (ACE2) has been proposed as preferred receptor for SARS-CoV-2 host infection, yet specific proteins participating in the virus entry are not fully known. SARS-CoV-2 might use other co-receptor or auxiliary proteins allowing virus infection. In silico experiments proposed that SARS-CoV-2 might bind dipeptidyl peptidase 4 (DPP4/CD26), which was established previously as receptor for MERS-CoV. The renin–angiotensin–aldosterone system (RAAS) component ACE2 and DPP4 are proteins dysregulated in diabetes. Imbalance of the RAAS and direct effect of soluble DPP4 exert deleterious vascular effects. We hypothesize that diabetic patients might be more affected by COVID-19 due to increased presence ACE2 and DPP4 mediating infection and contributing to a compromised vasculature. Here, we discuss the role of ACE2 and DPP4 as relevant factors linking the risk of SARS-CoV-2 infection and severity of COVID-19 in diabetic patients and present an outlook on therapeutic potential of current drugs targeted against RAAS and DPP4 to treat or prevent COVID-19-derived vascular complications. Diabetes affects more than 400 million people worldwide, thus better understanding of how they are affected by COVID-19 holds an important benefit to fight against this disease with pandemic proportionsIV is the recipient of a FPU fellowship (FPU16/02612). TR and JE are supported by KomIT-Center of Competence for Innovative Diabetes Therapy- funded by EFRE-NRW. CP and CS-F are supported by a grant from Plan Nacional de I+D (SAF2017-84776-R

    Visfatin Impairs Endothelium-Dependent Relaxation in Rat and Human Mesenteric Microvessels through Nicotinamide Phosphoribosyltransferase Activity

    Get PDF
    Visfatin, also known as extracellular pre–B-cell colony–enhancing factor (PBEF) and nicotinamide phosphoribosyltransferase (Nampt), is an adipocytokine whose circulating levels are enhanced in metabolic disorders, such as type 2 diabetes mellitus and obesity. Circulating visfatin levels have been positively associated with vascular damage and endothelial dysfunction. Here, we investigated the ability of visfatin to directly impair vascular reactivity in mesenteric microvessels from both male Sprague-Dawley rats and patients undergoing non-urgent, non-septic abdominal surgery. The pre-incubation of rat microvessels with visfatin (50 and 100 ng/mL) did not modify the contractile response to noradrenaline (1 pmol/L to 30 µmol/L), as determined using a small vessel myograph. However, visfatin (10 to 100 ng/mL) concentration-dependently impaired the relaxation to acetylcholine (ACh; 100 pmol/L to 3 µmol/L), without interfering with the endothelium-independent relaxation to sodium nitroprusside (1 nmol/L to 3 µmol/L). In both cultured human umbilical vein endothelial cells and rat microvascular preparations, visfatin (50 ng/mL) stimulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, as determined by lucigenin-derived chemiluminiscence. The relaxation to ACh impaired by visfatin was restored by the NADPH oxidase inhibitor apocynin (10 µmol/L). Additionally, the Nampt inhibitor APO866 (10 mmol/L to 10 µmol/L), but not an insulin receptor-blocking antibody, also prevented the stimulation of NADPH oxidase and the relaxation impairment elicited by visfatin. Accordingly, the product of Nampt activity nicotinamide mononucleotide (100 nmol/L to 1 mmol/L) stimulated endothelial NADPH oxidase activity and concentration-dependently impaired ACh-induced vasorelaxation. In human mesenteric microvessels pre-contracted with 35 mmol/L potassium chloride, the endothelium-dependent vasodilation to bradykinin (1 nmol/L to 3 µmol/L) was equally impaired by visfatin and restored upon co-incubation with APO866. In conclusion, visfatin impairs endothelium-dependent relaxation through a mechanism involving NADPH oxidase stimulation and relying on Nampt enzymatic activity, and therefore arises as a potential new player in the development of endothelial dysfunction

    The angiotensin-(1-7)/mas axis counteracts angiotensin II-dependent and -independent pro-inflammatory signaling in human vascular smooth muscle cells

    Get PDF
    Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1β. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1β, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro7-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.This work was funded by grants from Ministerio de Economía y Competitividad (SAF2014-52762-R

    The angiotensin-(1-7)/Mas receptor a xis protects from endothelial cell senescence via klotho and Nrf2 activation

    Get PDF
    Endothelial cell senescence is a hallmark of va scular aging that pre disposes to vascular disease. We aimed to explore the capacity of the renin-angiotensin system (RAS) heptapeptide angiotensin (Ang)-(1-7) to counteract human endothelial cell senescence and to identify intracellular pathways mediati ng its potential protective action. In human umbilical vein endothelial cell (HUVEC) cult ures, Ang II promoted cell senescence, as revealed by the enhancement in se nescence-associated galactosidase (SA- -gal+) positive staining, total and telomeric DNA damage, adhesion molecules expression and human mononuclear adhesion to HUVEC monolaye rs. By activating the G-coupled receptor Mas, Ang-(1-7) inhibit ed the pro-senescence action of Ang II, but also of a non- RAS stressor such as the cytokine IL-1 . Moreover, Ang-(1-7) enhanced endothelial klotho levels, while klotho silencing resulted in th e loss of the anti-senescence action of the heptapeptide. Indeed, both Ang-(1-7) and recombinant klotho activated the cytoprotective Nrf2/heme-oxygenase-1 (HO)-1 pathway. The HO-1 inhibitor tin protoporphyrin IX prevented the anti-senescence action evoked by Ang-(1-7) or recombinant klotho. Overall, the present study ide ntifies Ang-(1-7) as an anti-senescence peptide displaying its protectiv e action beyond the RAS by consecutively activating klotho and Nrf2/HO-1. Ang-(1-7) mimetic dru gs may thus prove useful to prevent endothelial cell senescence and its re lated vascular complications

    La adipoquina visfatina como promotor de daño vascular en enfermedades metabólicas

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Farmacología y Terapéutica. Fecha de lectura: 1 de Abril de 201
    corecore