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Abstract

Endothelial cell senescence is a hallmark of vascular aging that predisposes to

vascular disease. We aimed to explore the capacity of the renin–angiotensin
system (RAS) heptapeptide angiotensin (Ang)‐(1‐7) to counteract human

endothelial cell senescence and to identify intracellular pathways mediating its

potential protective action. In human umbilical vein endothelial cell (HUVEC)

cultures, Ang II promoted cell senescence, as revealed by the enhancement in

senescence‐associated galactosidase (SA‐β‐gal+) positive staining, total and

telomeric DNA damage, adhesion molecule expression, and human mononuclear

adhesion to HUVEC monolayers. By activating the G protein‐coupled receptor

Mas, Ang‐(1‐7) inhibited the pro‐senescence action of Ang II, but also of a

non‐RAS stressor such as the cytokine IL‐1β. Moreover, Ang‐(1‐7) enhanced

endothelial klotho levels, while klotho silencing resulted in the loss of the anti‐
senescence action of the heptapeptide. Indeed, both Ang‐(1‐7) and recombinant

klotho activated the cytoprotective Nrf2/heme oxygenase‐1 (HO‐1) pathway.

The HO‐1 inhibitor tin protoporphyrin IX prevented the anti‐senescence action

evoked by Ang‐(1‐7) or recombinant klotho. Overall, the present study identi-

fies Ang‐(1‐7) as an anti‐senescence peptide displaying its protective action

beyond the RAS by consecutively activating klotho and Nrf2/HO‐1. Ang‐(1‐7)
mimetic drugs may thus prove useful to prevent endothelial cell senescence

and its related vascular complications.

Abbreviations: ACE2, angiotensin‐converting enzyme 2; Ang‐(1‐7), angiotensin‐(1‐7); Ang, angiotensin; ARE, antioxidant‐regulated elements; BSA, bovine serum albumin; FCS, fetal calf serum;

HO‐1, heme oxygenase‐1; ICAM‐1, intercellular adhesion molecule‐1; IL‐1β, interleukin‐1β; Nrf2, nuclear factor‐erythroid 2‐related factor 2; RAS, renin‐angiotensin system; r‐klotho, recombinant

klotho; SA-β‐gal, senescence‐associated β‐galactosidase; SASP: senescence-associated secretory phenotype; Sn‐PP, tin protoporphyrin IX; TIFs, telomere dysfunction‐induced foci; TRF‐1,
telomere protein telomeric repeat binding factor; VCAM‐1, vascular cell adhesion molecule‐1; γH2AX, phosphorylated histone H2AX.
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1 | INTRODUCTION

Vascular aging is a complex multifaceted process displaying func-

tional and structural alterations that ultimately favor vascular distur-

bances, including endothelial dysfunction and atherosclerosis

(Donato, Morgan, Walker, & Lesniewski, 2015). Vascular aging is

indeed a main predictor of frailty and poor cardiovascular outcomes

in the elderly (Nilsson, 2008).

Endothelial cell senescence is one of the major mechanisms con-

tributing to vascular aging (Donato et al., 2015; López‐Otín, Blasco,

Partridge, Serrano, & Kroemer, 2013). Moreover, a wide variety of

extracellular stressors and DNA insults, including cytokines and

vasoactive peptides, may promote premature senescence in

endothelial cells, which consequently undergo a series of functional

and morphological changes that ultimately lead to growth arrest and

the acquisition of a senescence‐associated secretory phenotype

(SASP) (Erusalimsky, 2009). The SASP is considered a main driver of

sterile age‐related inflammation which favors leukocyte recruitment

and predisposes to vascular disease (Donato et al., 2015; Tchkonia,

Zhu, Deursen, Campisi, & Kirkland, 2013). In this context, the search

of therapeutic tools to attenuate premature endothelial senescence

arises as a promising strategy to attenuate vascular aging and its

complications (Childs, Li, & Deursen, 2018).

The renin–angiotensin system (RAS) plays a pivotal role in the

regulation of cardiovascular homeostasis, in both health and disease.

In recent years, a number of studies have been dedicated to deci-

pher the biological actions of novel RAS components, such as angio-

tensin (Ang)‐(1‐7). This heptapeptide is generated not only from

angiotensin II (Ang II) through the action of angiotensin‐converting
enzyme 2 (ACE2), but also from angiotensin I (Ang I) via neutral

endopeptidase activity (Passos‐Silva, Brandan, & Santos, 2015). Ang‐
(1‐7) is a ligand for the G‐protein‐coupled receptor Mas, the first

member of the Mas‐related G‐protein‐coupled (MrgD) receptor fam-

ily (Kostenis et al., 2005). Mas can be found in different extents in

most organs and tissues, and such ubiquitous Mas expression relies,

at least in part, on its endothelial expression in vessels from different

organs, suggesting a relevant role of this receptor in the function of

the endothelium (Bader, Alenina, Andrade‐Navarro, & Santos, 2014).

In the cardiovascular system, Ang‐(1‐7) has been regarded as a

physiological antagonist of Ang II by opposing its vasoconstrictor, pro-

liferative, hypertrophic, or pro‐inflammatory actions (Machado‐Silva,
Passos‐Silva, Santos, & Sinisterra, 2016; Peiró et al., 2016; Simões E

Silva & Teixeira, 2016; Villalobos et al., 2016). In recent studies, Ang

II has been shown to directly promote endothelial cell senescence,

thus contributing to vascular disease by a novel mechanism (Hsu, Lin,

Lin, & Juo, 2018; Li et al., 2014). However, whether Ang‐(1‐7) may

antagonize the endothelial senescence promoted by Ang II or even by

other non‐RAS stressors remains to be determined.

Klotho is a protein playing a key regulatory role in bone and min-

eral metabolism. It is expressed at high levels not only in the kidney,

but also in other tissues including the vasculature (Hu, Kuro‐o, &
Moe, 2014). In recent years, klotho has been recognized as an anti‐
aging protein, since the klotho gene inactivation displays a premature

aging phenotype in mice (Kuro‐o et al., 1997). The impact of klotho

on vascular function remains poorly understood, but the protein

seems relevant for vascular homeostasis, since mice with defective

klotho gene exhibit endothelial dysfunction (Saito et al., 1998).

The nuclear factor‐erythroid 2‐related factor 2 (Nrf2)/antioxidant‐
regulated element (ARE) system is a major evolutionary conserved

cytoprotective system. It is also nowadays considered a powerful

modulator of species longevity (Loboda, Damulewicz, Pyza, Jozkowicz,

& Dulak, 2016). Nrf2 responds by promoting the expression of genes

encoding for anti‐oxidant and anti‐inflammatory proteins. Among

them, heme oxygenase (HO)‐1 provides cell protection by degrading

the pro‐oxidant heme and ultimately forming bilirubin together with

the signaling gas carbon monoxide (Loboda et al., 2016).

In this study, we aimed to explore the capacity of the Ang‐(1‐7)/
Mas receptor axis to antagonize cell senescence induced by Ang II

and by other non‐RAS stressors. The participation of klotho and

Nrf2/HO‐1 in the protective actions of Ang‐(1‐7) on endothelial cells

was also analyzed.

2 | RESULTS

2.1 | Ang‐(1‐7) mitigates endothelial cell senescence
induced by Ang II

The fraction of senescence‐associated β‐galactosidase (SA‐β‐gal) cells,
used as a marker of cell senescence, was of 2.97 ± 0.23% in control

unstimulated human umbilical vein endothelial cell (HUVEC) pre‐se-
nescent cultures. After the exposure to Ang II (100 nM) for 18 hr,

the fraction of cells positively stained for SA‐β‐gal was significantly

enhanced, and this effect was mitigated by Ang‐(1‐7) (100 nM; Fig-

ure 1a). The anti‐senescence action of Ang‐(1‐7) was blunted by the
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selective and competitive Mas antagonist peptide D‐Ala7‐Ang‐(1‐7)
(A779; 1 µM) (Figure 1a). Ang‐(1‐7) and A779 had no effect by

themselves on the fraction of SA‐β‐gal+ cells (Figure 1a).

DNA damage is one major event triggering pro‐senescence
responses, which results in the accumulation of phosphorylated his-

tone H2AX (γH2AX) at the sites of injury (Erusalimsky, 2009). Con-

sistent with this notion, Ang II also increased the number of γH2AX

foci scattered over total nuclear DNA (Figure 1b,c). Moreover, Ang

II augmented the co‐localization of γH2AX with the telomere protein

telomeric repeat binding factor (TRF)‐1 in the so‐called telomere

dysfunction‐induced foci (TIFs) (Figure 1b,d), as well as the number

of endothelial cells expressing at least five TIFs (Figure 1e). Ang‐(1‐
7) attenuated the impact of Ang II on DNA damage by a mechanism

that was also blunted by A779 (Figure 1b–e).
We also assessed the action of Ang‐(1‐7) in late‐passage (P12)

senescent HUVEC, in which the proliferation rate was markedly

reduced and the average SA‐βgal+ staining in basal unstimulated

conditions was shifted up to 53.52 ± 3.44% (Supporting Information

Figure S1). This basal SA‐β‐gal+ staining was further increased by

Ang II, but only by 1.20 ± 0.06‐fold (Supporting Information Fig-

ure S2a). In these senescent cells, Ang‐(1‐7) prevented not only the

effect of Ang II, but also part of the enhanced basal SA‐β‐gal+ stain-

ing (Supporting Information Figure S2a).

2.2 | Ang‐(1‐7) protects from endothelial cell
senescence induced by non‐RAS stressors

Ang‐(1‐7) has been proposed as a physiological antagonist of Ang II.

However, we next aimed to determine the capacity of the heptapep-

tide to counteract endothelial senescence induced by other stressors

independent of the RAS. The pro‐inflammatory cytokine interleukin

(IL)‐1β was chosen based on its growing relevance in human vascular

F IGURE 1 Ang‐(1‐7) counteracts
endothelial cell senescence and DNA
damage induced by Ang II. (a) SA‐β‐gal+
cells were quantified by manual scoring in
HUVEC treated for 18 h with Ang II
(100 nM), either alone or in the presence
of Ang‐(1‐7) (100 nM). In some
experiments, the Mas receptor antagonist
A779 (1 μM) was added. Representative
phase‐contrast images are shown on the
right, with SA‐β‐gal+ cells (blue staining)
indicated with arrowheads (200×). (b)
Representative deconvolved images of
HUVEC treated as described above. DNA
damage foci and telomere dysfunction‐
induced foci (TIFs) were detected by
immunofluorescence microscopy with
specific antibodies against γH2AX (red) and
TRF‐1 (green). Cell nuclei were
counterstained with DAPI (blue).
Arrowheads point to sites of γH2AX and
TRF‐1 colocalization (yellow). The right
small boxes are enlarged views of
representative merged images where
colocalization of γH2AX with TRF‐1 was
observed, especially in cultures treated
with Ang II or IL‐1β alone or in
combination with Ang‐(1‐7) + A779.
Bar = 15 μm. (c) γH2AX foci and (d) TIFs
were quantified as mean fluorescent voxels
per cell. (e) Percentage of cells with ≥5
TIFs per cell. *p < 0.05 vs. control
untreated cells, #p < 0.05 vs. Ang II; n = 3–
4
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disease (Libby, 2017; Ridker et al., 2017). Similar to Ang II, IL‐1β
(2.5 ng/ml) increased SA‐β‐gal+ cell number (Figure 2a) and aug-

mented γH2AX levels at both telomeric and non‐telomeric sites, as

well as the number of cells exhibiting at least five TIFs (Figure 2b–e).
Ang‐(1‐7) was able to attenuate cell senescence and DNA damage

triggered by IL‐1β, and once again, this effect was dampened by

A779 (Figure 2a–e). As observed for Ang II, Ang‐(1‐7) was also cap-

able to prevent the SA‐β‐gal+ staining induced by IL‐1β (1.16 ± 0.07‐
fold over basal unstimulated staining) in late‐passage senescent cells

(Supporting Information Figure S2b).

2.3 | Ang‐(1‐7) attenuates the endothelial senescent
pro‐inflammatory phenotype

Senescent endothelial cells undergo a series of changes that result

into an activated pro‐inflammatory and secretory phenotype that

eventually favors leukocyte recruitment.

Consistent with this notion, both Ang II and IL‐1β enhanced the

expression of the adhesion molecules, intercellular adhesion mole-

cule (ICAM)‐1 (Figure 3a,d) and vascular cell adhesion molecule

(VCAM)‐1 (Figure 3b,e), and used as markers of endothelial cell

activation and SASP acquisition. Functionally, the endothelial acti-

vation by both Ang II and IL‐1β translated into high numbers of

superfused mononuclear cells adhered to HUVEC monolayers (Fig-

ure 3c,f). Ang‐(1‐7) alleviated the pro‐adhesive actions of both Ang

II and IL‐1β, and such effect was abolished in the presence of A779

(Figure 3a–f). Neither Ang‐(1‐7) nor A779 did influence by them-

selves cell adhesion (Figure 3c,f). Moreover, Ang II and IL‐1β
enhanced the transcription (Supporting Information Figure S3a,b)

and the secretion of the pro‐inflammatory cytokine IL‐6, a key

SASP marker. Ang‐(1‐7) was able to inhibit the induction of IL‐6
secretion by both Ang II and IL‐1β, while A779 was in turn able to

revert the anti‐inflammatory action of Ang‐(1‐7) over the SASP

marker (Figure 3g,h).

F IGURE 2 Ang‐(1‐7) counteracts
endothelial cell senescence and DNA
damage induced by the non‐RAS stressor
IL‐1β. (a) SA‐β‐gal+ cells were quantified by
manual scoring in HUVEC treated for 18 h
with IL‐1β (2.5 ng/ml), either alone or in
the presence of Ang‐(1‐7) (100 nM) with
or without the Mas receptor antagonist
A779 (1 μM). Representative phase‐
contrast images are shown on the right,
with SA‐β‐gal+ cells (blue staining)
indicated with arrowheads (200×). (b)
Representative deconvolved images of
HUVEC treated as described above. DNA
damage foci and telomere dysfunction‐
induced foci (TIFs) were detected by
immunofluorescence microscopy with
specific antibodies against γH2AX (red) and
TRF‐1 (green). Cell nuclei were
counterstained with DAPI (blue).
Arrowheads point to sites of γH2AX and
TRF‐1 colocalization (yellow). The right
small boxes are enlarged views of the
merged images where colocalization of
γH2AX with the telomere protein
telomeric repeat binding factor (TRF)‐1 was
observed in the so‐called telomere
dysfunction‐induced foci (TIFs).
Bar = 15 μm. (c) γH2AX foci and (d) TIFs
were quantified as mean fluorescent voxels
per cell. (e) Percentage of cells with ≥5
TIFs per cell. n = 3–7; *p < 0.05 vs. control
untreated cells, #p < 0.05 vs. IL‐1β
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2.4 | Klotho is required for the anti‐senescence
action of Ang‐(1‐7)

To analyze the cytoprotective mechanisms that might be on the

basis of the anti‐senescence action of Ang‐(1‐7), we first explored a

possible role for klotho. In endothelial cells, human recombinant

klotho (r‐klotho) prevented the enhanced SA‐β‐gal+ cell number

induced by both Ang II and IL‐1β, without affecting cell senescence

by itself (Figure 4a). In fact, Ang‐(1‐7) was itself capable to augment

klotho levels in endothelial cells via Mas receptors (Figure 4b). To

assess whether klotho was necessary for the anti‐senescence action

of Ang‐(1‐7), endothelial cultures were next transfected with either

klotho siRNA or scrambled sequence non‐silencing siRNA (Fig-

ure 4c). In klotho‐silenced cells, but not in those transfected with

scrambled siRNA, the capacity of Ang‐(1‐7) to antagonize the

senescence response triggered by both Ang II and IL‐1β was fully

lost (Figure 4d,e).

2.5 | Nrf2/HO‐1 mediates the anti‐senescence
effect of Ang‐(1‐7) and klotho

To gain insight into the common cytoprotective pathways that might

be activated by both Ang‐(1‐7) and klotho, we next focused on Nfr2/

HO‐1. First, the pharmacological activation of Nrf2 by means of sul-

foraphane protected endothelial cultures against cell senescence

induced by both Ang II and IL‐1β (Figure 5a). Moreover, Ang‐(1‐7)
augmented the cellular levels of Nrf2 in a Mas‐dependent manner

(Figure 5b,d), as r‐klotho also did (Figure 5c,d).

HO‐1 levels were equally enhanced by either Ang‐(1‐7) or r‐
klotho (Figure 5e,f). In fact, in cells exposed to the HO‐1 inhibitor tin

protoporphyrin IX (Sn‐PP, 1 µM), the protective effect of Ang‐(1‐7)
against both Ang II‐ and IL‐1β‐induced senescence was lost (Fig-

ure 5g,h). Sn‐PP also abrogated the anti‐senescence action of r‐
klotho (Figure 5i,j). Similarly, the Nrf2 inhibitor trigonelline (1 µM)

inhibited the anti‐senescence action of both Ang‐(1‐7) and r‐klotho

F IGURE 3 Ang‐(1‐7) attenuates the endothelial senescent pro‐inflammatory phenotype. The levels of (a, d) ICAM‐1 and (b, e) VCAM‐1 were
assessed by flow cytometry in HUVEC cultures treated for 18 h with Ang II (100 nM) or IL‐1β (2.5 ng/ml), respectively, either alone or in the
presence of Ang‐(1‐7) (100 nM). In some experiments, the Mas receptor antagonist A779 (1 μM) was added. (c, f) Adhesion of human
mononuclear cells to HUVEC monolayers exposed to the treatments described above. (g, h) IL‐6 secretion in supernatants from HUVEC
exposed to the treatments described above. n = 3–8. *p ≤ 0.05 vs. control untreated cells, #p ≤ 0.05 vs. Ang II‐ or IL‐1β‐stimulated cells
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in Ang II‐ or IL‐1β‐stimulated cells (Supporting Information Figure S4a,

b). Moreover, in klotho‐silenced cells, Ang‐(1‐7) was not capable any-

more to enhance Nrf2 levels and even a reduction in Nrf2 levels

was observed (Supporting Information Figure S5).

Globally considered, these data identified Nrf2/HO‐1 as key

mediators of the cytoprotective effects derived from the consecutive

activation of Ang‐(1‐7) and klotho. This concept was further rein-

forced using a functional ex vivo vascular reactivity assay. In nora-

drenaline pre‐contracted murine mesenteric microvessels, the

vasodilation exerted by Ang‐(1‐7), but also the one induced by r‐
klotho, was markedly inhibited by Sn‐PP, while the one exerted by

the vasodilator acetylcholine remained unaffected (Figure 5k).

3 | DISCUSSION

Vascular aging is a main risk factor for developing adverse cardiovas-

cular events (Laina, Stellos, & Stamatelopoulos, 2017). Moreover, in

addition to physiological aging, certain pathological conditions, such

as type 2 diabetes mellitus, obesity, or chronic kidney disease, dis-

play accelerated vascular aging, which aggravates the complications

of the disease (Kooman, Kotanko, Schols, Shiels, & Stenvinkel, 2014;

Nilsson, 2008). Overall, the global aging population together with

the high prevalence of the above‐mentioned diseases underpins the

necessity to identify therapeutic strategies to retard vascular aging

and its adverse outcomes.

In the present study, we show that the RAS, and particularly the

Ang‐(1‐7)/Mas axis, may be a suitable target to delay endothelial cell

senescence, one of the key hallmarks of vascular aging that drives to

endothelial dysfunction and atherosclerosis.

We herein demonstrate that Ang‐(1‐7) attenuates total and

telomeric DNA damage, an early senescence‐associated event that

signals downstream to provoke growth arrest and senescence

(López‐Otín et al., 2013). Ang‐(1‐7) also mitigates SA‐β‐gal activity,
which reflects the increased lysosomal mass observed in senescent

F IGURE 4 Klotho mediates the anti‐senescence effect of Ang‐(1‐7). (a) HUVEC were treated for 18 h with Ang II (100 nM) or IL‐1β
(2.5 ng/ml), either alone or with r‐klotho (1 nM), and the number of SA‐β‐gal+ cells was determined. n = 3. (b) Klotho protein levels were
measured by Western blot in HUVEC stimulated for 18 hr with Ang‐(1‐7) (100 nM) alone or in combination with A779 (1 μM). A
representative gel is shown on top. n = 5–7. (c) Representative experiment showing klotho protein levels in HUVEC untreated or transfected
with klotho siRNA or scramble siRNA (negative control). A gel is shown on top. SA‐β‐gal+ were determined in HUVEC transfected with
scramble siRNA or klotho siRNA and treated for 18 hr with (d) Ang II (100 nM) or (e) IL‐1β (2.5 ng/ml), alone or in combination with Ang‐(1‐7)
(100 nM). n = 4–5. *p ≤ 0.05 vs. control untreated cells, #p ≤ 0.05 vs. Ang II‐ or IL‐1β‐stimulated cells
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cells (Kurz, Decary, Hong, & Erusalimsky, 2000), and attenuates the

SASP that promotes leukocyte adhesion and inflammation. All these

anti‐senescence actions of Ang‐(1‐7) relied on the activation of the

Mas receptors, as for other vascular and non‐vascular protective

actions of Ang‐(1‐7) (Machado‐Silva et al., 2016; Peiró et al., 2016;

Villalobos et al., 2016). In line with our findings, a recent microarray‐
based study has identified the senescence‐associated p53 signaling

pathway as a main protein cluster influenced by Ang‐(1‐7) in

endothelial cells (Meinert et al., 2016).

Besides Ang II, the present study shows that the pro‐inflammatory

cytokine IL‐1β can also promote human endothelial cell senescence.

The role of this cytokine in human cardiovascular disease and

atherosclerosis has recently gained relevance at the light of clinical trials

such as CANTOS (Libby, 2017; Ridker et al., 2017). Importantly, Ang‐(1‐
7) was also capable to mitigate the endothelial senescence induced by

IL‐1β. This suggests pleiotropic benefits of the Ang‐(1‐7)/Mas receptor

axis beyond Ang II and the RAS, which reinforces the potential interest

of the heptapeptide as a tool for fighting vascular disturbances. In late‐

F IGURE 5 HO‐1 mediates the anti‐senescence effect of klotho and Ang‐(1‐7). (a) SA‐β‐gal+ cells were quantified in HUVEC cultures treated
for 18 h with either Ang II (100 nM) or IL‐1β (2.5 ng/ml) alone or with the Nrf2 activator sulforaphane (SFN; 1 μM). n = 3. (b, c) Nrf2 protein
levels were measured by Western blot in HUVEC stimulated for 18 hr with Ang 1‐7 (100 nM) alone or with A779 (1 μM). SFN (1 μM) was
used as a positive control. Nrf2 was also quantified in HUVEC exposed to human r‐klotho (1 nM) for the same time period. n = 7–10. (d) Nrf2
(green) was visualized by indirect immunofluorescence in HUVEC stimulated for 18 hr with Ang‐(1‐7) (100 nM) alone or with A779 (1 μM), r‐
klotho (1 nM), or SFN (1 μM). Nuclei counterstained with Hoechst (blue) (200×). (e, f) Determination of HO‐1 protein levels in HUVEC cultures
treated for 18 hr with Ang (1‐7) (100 nM) or r‐klotho (1 nM). Representative blots are shown on the right. n = 5–15. (g, h) Quantification of
SA‐β‐gal+cells in HUVEC cultures treated for 18 hr with either Ang II (100 nM) or IL‐1β (2.5 ng/ml) alone or in combination with Ang‐(1‐7)
(100 nM) and/or tin protoporphyrin IX (Sn‐PP; 1 nM). n = 3–6. (i, j) SA‐β‐gal+cells were also quantified in cultures stimulated for 18 hr with
either Ang II (100 nM) or IL‐1β (2.5 ng/ml) alone or in combination with r‐klotho with or without Sn‐PP (1 μM). n = 3–7. (k) Vasorelaxant
responses of noradrenaline (NA; 3 µM) pre‐contracted murine microvessels to Ang‐(1‐7) (1 pM to 1 µM), r‐klotho (0.4 to 2 ng/ml), or
acetylcholine (ACh; 0.1 nM to 10 μM). The relaxation curves were performed with or without (control) Sn‐PP (1 nM). n = 7–12 segments
obtained from three to six animals. *p ≤ 0.05 vs. control untreated cells, #p ≤ 0.05 vs. Ang II‐ or IL‐1β‐stimulated cells
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passage cultures, Ang‐(1‐7) maintained not only its capacity to attenu-

ate the impact of extracellular stressors but also reduced to some

extent the increased number of SA‐β‐gal+ cells observed in unstimu-

lated conditions, suggesting that the heptapeptide may prove useful in

counteracting, at least in part, replicative senescence.

Klotho is currently acknowledged as an anti‐aging protein, but its

role in the vasculature still remains poorly understood. Similar to Ang‐
(1‐7), klotho is able to exert nitric oxide‐dependent vasorelaxant

actions (Saito et al., 2000, 1998). Klotho also protects human

endothelial cells against the harmful effects of oxidative stress by acti-

vating superoxide dismutase and thus exerting anti‐apoptotic and

anti‐senescence properties (Ikushima, Rakugi, & Ishikawa, 2006;

Yamamoto et al., 2005). In human vessels, the expression of klotho

positively correlates with the expression of the anti‐inflammatory

cytokine IL‐10 (Martín‐Núñez et al., 2017). Clinically, circulating klotho

deficiency has been proposed to be a biomarker of chronic kidney dis-

ease and vascular age‐related diseases (Hu et al., 2014), and soluble

and vascular klotho inversely correlates with inflammatory markers in

human atherosclerosis (Martín‐Núñez et al., 2017). Overall, the still

limited available evidence supports a protective anti‐oxidant and anti‐
inflammatory role of klotho in the vasculature. Here, we provide data

that clearly reinforce the anti‐senescence and vasorelaxant properties

attributed to klotho, but, most importantly, by using gene silencing

approaches, we identify for the first time klotho as a fundamental

mediator of the protective anti‐senescence actions of Ang‐(1‐7). To
date, the regulation of klotho expression in endothelial cells remains

poorly understood, and hence, the intracellular mechanisms by which

Ang‐(1‐7) may induce klotho still need to be determined.

Inflammation and oxidative stress are hallmarks of aging and age‐
related pathologies (El Assar et al., 2012; López‐Otín et al., 2013;

Rodríguez‐Mañas et al., 2009). In recent years, the Nrf2/HO‐1 sys-

tem has been regarded not only as a modulator of aging and species

longevity, but also as a promising therapeutic target in the vascula-

ture to ameliorate pathologies such as restenosis, thrombosis,

myocardial infarction, hypertension, or atherosclerosis (Durante,

2010). Here, we show that this powerful defense system is activated

by Ang‐(1‐7) in human endothelial cells. In line with our observations,

a non‐peptide Mas agonist drug AVE0991 was reported to activate

HO‐1 expression in another vascular cell type such as vascular

smooth muscle (Sheng‐Long et al., 2012). In fact, we demonstrate

that the Nrf2/HO‐1 is necessary for klotho itself to protect against

senescence, which is in line with very recent findings in another vas-

cular cell type (Maltese et al., 2017). Moreover, we identify HO‐1 as

a main player in the vasorelaxant actions of klotho and Ang‐(1‐7) in
a more complex ex vivo system. Overall, the Nrf2/HO‐1 system

arises as a fundamental common mediator of the vasculoprotective

actions of klotho and Ang‐(1‐7) (Figure 6).

In conclusion, the present study reveals the RAS heptapeptide

Ang‐(1‐7) as a valuable tool to protect against human endothelial cell

senescence through the consecutive activation of klotho and the

Nrf2/HO‐1 axis. Over the last years, a notable effort is being made to

develop pharmacological activators of the ACE2/Ang‐(1‐7)/Mas axis to

fight a number of conditions, including cardiovascular diseases. In light

of the present results, these drugs may prove useful to counteract

endothelial cell senescence and premature vascular aging, as well as

their deleterious complications. Since blocking senescence with Ang‐
(1‐7) might promote dysplasia or neoplasia of endothelial cells, or

Ang‐(1‐7) may itself exert hypotension or cardiac and renal fibrosis

(Shao et al., 2008; Velkoska, Dean, Griggs, Burchill, & Burrell, 2011),

further clinical studies will be needed to assess not only the efficacy

but also the safety and tolerability of the therapeutic use of Ang‐(1‐7).

4 | EXPERIMENTAL PROCEDURES

4.1 | Materials

Culture plasticware was from TPP (Trasadingen, Switzerland). M199

medium, fetal calf serum (FCS), and trypsin‐EDTA were from

F IGURE 6 Graphical abstract depicting
the proposed mechanism of action for the
anti‐senescence properties of Ang‐(1‐7) in
endothelial cells
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Biological Industries (Beit‐Haemek, Israel). Human r‐klotho and IL‐1β
were purchased from Abcam (ab84072; Cambridge, UK) and Pepro-

tech (London, UK), respectively. Ang‐(1‐7) and the Mas antagonist

A779 were purchased from Bachem (Bubendorf, Switzerland). Sn‐PP
and sulforaphane were from Frontier Scientific (Logan, UT, USA) and

LKT Laboratories (Minnesota, USA), respectively. All other reagents

were purchased from Sigma (St. Louis, MO, USA) unless otherwise

stated.

4.2 | Cell culture

Human umbilical vein endothelial cells (HUVEC) were isolated from

umbilical cords, as previously described (Romacho et al., 2013). Cells

were cultured in M199 medium supplemented with 20% FCS, 25 μg/

ml endothelial cell growth supplement (ECGS), 100 μg/ml heparin,

and antibiotics (100 U/ml penicillin, 100 µg/ml streptomycin, and

2.5 µg/ml amphotericin B) at 37°C in a humidified atmosphere with

5% CO2. For experiments, pre‐senescent cells at passages 1–5 were

incubated for the indicated time periods with the different test com-

pounds in M199 medium supplemented with 10% FCS, ECGS, hep-

arin and antibiotics. For some experiments, senescent HUVEC were

used at passage 12. All the procedures were reviewed and approved

by the ethics committee of Universidad Autónoma of Madrid and

Hospital Universitario La Paz, respectively, and written informed

consent was obtained from all cord donors.

4.3 | Determination of senescence‐associated β‐
galactosidase (SA‐β‐gal) activity

SA‐β‐gal staining was performed with a commercial kit (Sigma, St.

Louis, MO, USA) as previously described (Cardus, Uryga, Walters, &

Erusalimsky, 2013; Villalobos et al., 2014). Positive senescent cells

stained in blue were counted by blind observers under an Eclipse

TE300 microscope (Nikon, Tokyo, Japan). The ratio of SA‐β‐gal+ cells

per sample was determined by manual scoring of at least 1,000 cells

counted in 12 randomized fields.

4.4 | Detection of γH2AX foci and telomere
dysfunction‐induced foci

DNA damage foci and telomere dysfunction‐induced foci (TIFs) were

examined by immunofluorescence microscopy as previously described

(Cardus et al., 2013; Villalobos et al., 2016). Telomeres were detected

with an anti‐telomere repeat binding factor‐1 (TRF‐1) mouse mono-

clonal antibody (clone TRF‐78, dilution 1/1,000; Abcam) followed by a

goat anti‐mouse IgG Alexa Fluor conjugate (dilution 1/1,000; Invitro-

gen, Paisley, UK). γH2AX was detected with a rabbit polyclonal anti-

body against a synthetic phosphopeptide detecting residues

surrounding Ser139 of human histone H2A.X (dilution 1/100, Cell Sig-

naling, Danvers, MA), followed by Alexa Fluor 594‐conjugated goat

anti‐rabbit IgG (dilution 1/5,000, Invitrogen). Nuclei were counter-

stained with 4′,6′‐diamidino‐2‐phenylindole (DAPI; Invitrogen). After

mounting, samples were viewed with a Nikon Eclipse 80i microscope.

40 to 50 Z‐stack fluorescence images were captured at 0.2‐mm inter-

vals with a Hamamatsu Orca 285 digital camera, using the Volocity

3D image analysis software (Perkin Elmers, Inc., version 5.5). High‐res-
olution images were deconvolved using the Volocity Restoration mod-

ule. To determine co‐localization in three dimensions, Z‐stacks were

converted to voxels (volume pixels) and further analyzed with the

Volocity Co‐localization module after image thresholding. The average

green, red, and co‐localized fluorescence (expressed as voxels per cell)

and the percentage of TIF‐positive cells (cells with five or more sites

of co‐localization) were determined by analyzing at least 200 nuclei in

10 randomly selected fields per treatment.

4.5 | Flow cytometry

The expression of VCAM‐1 and ICAM‐1 was measured by flow

cytometry, as previously described (Azcutia et al., 2010). Primary

antibodies against VCAM‐1 (clone IE5; Chemicon, Temecula, CA) or

ICAM‐1 (clone 6.5B5; Chemicon) were used at a 1/100 dilution, fol-

lowed by incubation with an appropriate Alexa Fluor 488 secondary

antibody (Molecular Probes, Invitrogen Corporation, Carlsbad, CA;

dilution 1/250). Fluorescence was measured in a FACScan flow

cytometer (Beckton‐Dickinson, Franklin Lakes, NJ), and data were

analyzed using CXP analysis software (Beckton‐Dickinson).

4.6 | Adhesion assay

Mononuclear cells were obtained from buffy coats of healthy donors

by Ficoll‐Hypaque density gradient centrifugation, as previously

described (Mateo et al., 2007) following the principles outlined in

the Declaration of Helsinki and the procedure was approved by the

institutional ethics committee of the University Clinic Hospital of

Valencia, Valencia, Spain. All subjects had signed an informed con-

sent. Adhesion of mononuclear cells to HUVEC monolayers was ana-

lyzed with a live imaging flow model as previously described (Azcutia

et al., 2010). Briefly, HUVEC monolayers were exposed for 18 hr to

the different compounds. The Glycotech flow chamber was assem-

bled and placed on an inverted microscope stage, and freshly iso-

lated mononuclear cells (1 × 106/ml) were then perfused across the

endothelial monolayer. In all experiments, leukocyte interactions

were determined after 5 min at 0.5 dyn/cm2. Cells interacting with

the surface of the endothelium were visualized and recorded (×20

objective, ×10 eyepiece) using phase‐contrast microscopy (Axio

Observer A1 Carl Zeiss microscope, Thornwood, NY).

4.7 | IL‐6 secretion

After the appropriate treatments and incubation times, supernatants

were collected, centrifuged at 900 g for 10 min at 4°C, and frozen

at −20°C until further use. IL‐6 was measured with an ELISA

immunoassay (Raybiotech, Norcross, GA, USA) according to the man-

ufacturer instructions.
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4.8 | Western Blot

Klotho, Nrf2, and HO‐1 levels in HUVEC were determined by Wes-

tern blot as previously described (Romacho et al., 2013) using anti-

bodies against klotho (ab203576; Abcam, Cambridge, UK; 1/1,000),

Nrf2 (H‐300, SC‐13032, Santa Cruz Biotechnology, 1/1,000), HO‐1
(ab13243; Abcam; 1/10,000), or anti α‐actin primary antibody (dilu-

tion 1/50.000; Sigma‐Aldrich) to ensure equal loading, followed by

incubation with corresponding specific horseradish peroxidase‐conju-
gated secondary antibodies (Bio‐Rad; 1:10,000). Immunoreactive

bands were detected using an ECL detection kit (GE Healthcare) and

quantified by densitometry using the NIH software Image J.

4.9 | Indirect immunofluorescence

Nrf2 was visualized in HUVEC by indirect immunofluorescence as

previously described (Villalobos et al., 2016). A primary polyclonal

antibody against Nrf2 (dilution 1/500; H‐300, SC‐13032, Santa

Cruz Biotechnology) was used, followed by incubation with an

appropriate secondary antibody (dilution 1/800). Nuclei were coun-

terstained with Hoechst (5 µg/ml, Invitrogen), and cells were

observed with a confocal microscopy (TCS SPE, Leica, Wetzlar,

Germany).

4.10 | α‐Klotho siRNA transfection

Cells were seeded in M199 culture medium with 20% FCS without

antibiotics for 24 hr, and klotho was silenced by adapting a previ-

ously described method (Peiró et al., 2013). Small interfering RNA

(siRNA) encoding human klotho (Thermo Fisher; 50 nM) was trans-

fected using Lipofectamine RNAiMAX and Opti‐MEM Reduced

Serum Medium (Thermo Fisher). After 6.5 hr, Opti‐MEM was

replaced by M199 20% FCS without antibiotics. Cells were exposed

to the different treatments in M199 with 10% FCS without antibi-

otics for 24 hr and then accordingly processed. klotho siRNA

duplexes sequence is as follows: 5′‐GGA UGU CCA CCA CAG UAA

ATT‐3′ and 5′‐UUU ACU GUG GUG GAC AUC CCA‐3′. A scrambled

duplex of RNA not targeted to any human gene was used as a nega-

tive control.

4.11 | Microvascular reactivity

Four‐month‐old male C57Bl/6 mice were maintained under standard-

ized conditions with an artificial 12‐hr–12‐hr dark–light cycle, with

free access to food and water. All animal studies followed national

guidelines and were approved by the institutional animal care and

ethics committees. Mice were sacrificed by exposition to carbon

dioxide. Rings of first branch mesenteric arteries (internal diameter:

150–200 µm) were mounted on a small‐vessel myograph to measure

isometric tension as described before (Peiró et al., 2016). Arteries

were contracted with 3 µM noradrenaline, and then, the vasoactive

responses to Ang‐(1‐7) (1 pM to 1 µM), acetylcholine (0.1 nM to

10 µM), or klotho (r‐klotho; 0.4–2 nM) were tested. In some cases,

the mesenteric segments were preincubated for 20 min with Sn‐PP
(1 µM) before addition of noradrenaline.

4.12 | Statistical analysis

Results are expressed as mean ± SEM. Statistical analysis was per-

formed using Student's t test and one‐way ANOVA followed by

Bonferroni post hoc test or two‐way ANOVA, as appropriate. A p

value ≤0.05 was considered statistically significant.
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