1,785 research outputs found
American Indian Knowledge, Attitudes, and Beliefs About Smokeless Tobacco: A Comparison of Two Focus Group Studies
The final publication is available at Springer via http://doi.org/10.1007/s10900-017-0362-3.Though smokeless tobacco (SLT) use has decreased in many communities, concern for American Indian (AI) SLT use remains, as this population continues to be disproportionally affected by SLT-related diseases. Tobacco has cultural significance to many AI tribes, therefore tobacco cessation messages portraying tobacco as entirely negative may be ineffective. As a part of our formative research for an SLT cessation intervention, we sought to gain a better understanding of the knowledge, attitudes, and beliefs about SLT among AI community members. We describe two independent focus group studies conducted in Montana (ten focus groups, 54 participants) and Kansas (six focus groups, 27 participants). Predominant themes emerged from three major topic areas (SLT use, program development, and recreational SLT use) during the discussions from both studies. The formative approach and data from these studies will allow us to more appropriately address SLT-related health disparities across multiple AI communities
Conservation risk of Batrachochytrium salamandrivorans to endemic lungless salamanders
The emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal ), is a significant conservation threat to salamander biodiversity in Europe, although its potential to affect North American species is poorly understood. We tested the susceptibility of two genera (Eurycea and Pseudotriton ) and three populations of lungless salamanders (Plethodontidae ) to Bsal . All species became infected with Bsal and two (Pseudotriton ruber and Eurycea wilderae ) developed chytridiomycosis. We also documented that susceptibility of E. wilderae differed among populations. Regardless of susceptibility, all species reduced feeding when exposed to Bsal at the highest zoospore dose, and P. ruber and one population of E. wilderae used cover objects less. Our results indicate that Bsal invasion in eastern North America could have significant negative impacts on endemic lungless salamander populations. Future conservation efforts should include surveillance for Bsal in the wild and in captivity, and championing legislation that requires and subsidizes pathogenâfree trade of amphibians
Conservation risk of Batrachochytrium salamandrivorans to endemic lungless salamanders
The emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal), is a significant conservation threat to salamander biodiversity in Europe, although its potential to affect North American species is poorly understood. We tested the susceptibility of two genera (Eurycea and Pseudotriton) and three populations of lungless salamanders (Plethodontidae) to Bsal. All species became infected with Bsal and two (Pseudotriton ruber and Eurycea wilderae) developed chytridiomycosis. We also documented that susceptibility of E. wilderae differed among populations. Regardless of susceptibility, all species reduced feeding when exposed to Bsal at the highest zoospore dose, and P. ruber and one population of E. wilderae used cover objects less. Our results indicate that Bsal invasion in eastern North America could have significant negative impacts on endemic lungless salamander populations. Future conservation efforts should include surveillance for Bsal in the wild and in captivity, and championing legislation that requires and subsidizes pathogen-free trade of amphibians
Sodium Chloride Inhibits the Growth and Infective Capacity of the Amphibian Chytrid Fungus and Increases Host Survival Rates
The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0â5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1â4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation
The high-energy Sun - probing the origins of particle acceleration on our nearest star
As a frequent and energetic particle accelerator, our Sun provides us with an excellent astrophysical laboratory for understanding the fundamental process of particle acceleration. The exploitation of radiative diagnostics from electrons has shown that acceleration operates on sub-second time scales in a complex magnetic environment, where direct electric fields, wave turbulence, and shock waves all must contribute, although precise details are severely lacking. Ions were assumed to be accelerated in a similar manner to electrons, but Îł-ray imaging confirmed that emission sources are spatially separated from X-ray sources, suggesting distinctly different acceleration mechanisms. Current X-ray and Îł-ray spectroscopy provides only a basic understanding of accelerated particle spectra and the total energy budgets are therefore poorly constrained. Additionally, the recent detection of relativistic ion signatures lasting many hours, without an electron counterpart, is an enigma. We propose a single platform to directly measure the physical conditions present in the energy release sites and the environment in which the particles propagate and deposit their energy. To address this fundamental issue, we set out a suite of dedicated instruments that will probe both electrons and ions simultaneously to observe; high (seconds) temporal resolution photon spectra (4Â keV â 150Â MeV) with simultaneous imaging (1Â keV â 30Â MeV), polarization measurements (5â1000Â keV) and high spatial and temporal resolution imaging spectroscopy in the UV/EUV/SXR (soft X-ray) regimes. These instruments will observe the broad range of radiative signatures produced in the solar atmosphere by accelerated particles
Fermi-LAT Study of Gamma-ray Emission in the Direction of Supernova Remnant W49B
We present an analysis of the gamma-ray data obtained with the Large Area
Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the direction of
SNR W49B (G43.3-0.2). A bright unresolved gamma-ray source detected at a
significance of 38 sigma is found to coincide with SNR W49B. The energy
spectrum in the 0.2-200 GeV range gradually steepens toward high energies. The
luminosity is estimated to be 1.5x10^{36} (D/8 kpc)^2 erg s^-1 in this energy
range. There is no indication that the gamma-ray emission comes from a pulsar.
Assuming that the SNR shell is the site of gamma-ray production, the observed
spectrum can be explained either by the decay of neutral pi mesons produced
through the proton-proton collisions or by electron bremsstrahlung. The
calculated energy density of relativistic particles responsible for the LAT
flux is estimated to be remarkably large, U_{e,p}>10^4 eV cm^-3, for either
gamma-ray production mechanism.Comment: 9 pages, 10 figure
- âŠ