133 research outputs found

    Setting research priorities for sexual, reproductive, maternal, newborn, child and adolescent health in humanitarian settings

    Get PDF
    Background: An estimated 70.8 million people are forcibly displaced worldwide, 75% of whom are women and children. Prioritizing a global research agenda to inform guidance, service delivery, access to and quality of services is essential to improve the survival and health of women, children and adolescents in humanitarian settings. / Method: A mixed-methods design was adapted from the Child Health and Nutrition Research Initiative (CHNRI) methodology to solicit priority research questions across the sexual, reproductive, maternal, newborn, child and adolescent health (SRMNCAH) domains in humanitarian settings. The first step (CHNRI) involved data collection and scoring of perceived priority questions, using a web-based survey over two rounds (first, to generate the questions and secondly, to score them). Over 1000 stakeholders from across the globe were approached; 177 took part in the first survey and 69 took part in the second. These research questions were prioritized by generating a research prioritization score (RPP) across four dimensions: answerability, program feasibility, public health relevance and equity. A Delphi process of 29 experts followed, where the 50 scored and prioritized CHRNI research questions were shortlisted. The top five questions from the CHNRI scored list for each SRMNCAH domain were voted on, rendering a final list per domain. / Results: A total of 280 questions were generated. Generated questions covered sexual and reproductive health (SRH) (n = 90, 32.1%), maternal health (n = 75, 26.8%), newborn health (n = 42, 15.0%), child health (n = 43, 15.4%), and non-SRH aspects of adolescent health (n = 31, 11.1%). A shortlist of the top ten prioritized questions for each domain were generated on the basis of the computed RPPs. During the Delphi process, the prioritized questions, based on the CHNRI process, were further refined. Five questions from the shortlist of each of the SRMNCAH domain were formulated, resulting in 25 priority questions across SRMNCAH. For example, one of the prioritized SRH shortlisted and prioritized research question included: “What are effective strategies to implement good quality comprehensive contraceptive services (long-acting, short-acting and EC) for women and girls in humanitarian settings?” / Conclusion: Data needs, effective intervention strategies and approaches, as well as greater efficiency and quality during delivery of care in humanitarian settings were prioritized. The findings from this research provide guidance for researchers, program implementers, as well as donor agencies on SRMNCAH research priorities in humanitarian settings. A global research agenda could save the lives of those who are at greatest risk and vulnerability as well as increase opportunities for translation and innovation for SRMNCAH in humanitarian settings

    Improving a Mother to Child HIV Transmission Programme through Health System Redesign: Quality Improvement, Protocol Adjustment and Resource Addition

    Get PDF
    Health systems that deliver prevention of mother to child transmission (PMTCT) services in low and middle income countries continue to underperform, resulting in thousands of unnecessary HIV infections of newborns each year. We used a combination of approaches to health systems strengthening to reduce transmission of HIV from mother to infant in a multi-facility public health system in South Africa.All primary care sites and specialized birthing centers in a resource constrained sub-district of Cape Metro District, South Africa, were enrolled in a quality improvement (QI) programme. All pregnant women receiving antenatal, intrapartum and postnatal infant care in the sub-district between January 2006 and March 2009 were included in the intervention that had a prototype-innovation phase and a rapid spread phase. System changes were introduced to help frontline healthcare workers to identify and improve performance gaps at each step of the PMTCT pathway. Improvement was facilitated and spread through the use of a Breakthrough Series Collaborative that accelerated learning and the spread of successful changes. Protocol changes and additional resources were introduced by provincial and municipal government. The proportion of HIV-exposed infants testing positive declined from 7.6% to 5%. Key intermediate PMTCT processes improved (antenatal AZT increased from 74% to 86%, PMTCT clients on HAART at the time of labour increased from 10% to 25%, intrapartum AZT increased from 43% to 84%, and postnatal HIV testing from 79% to 95%) compared to baseline.System improvement methods, protocol changes and addition/reallocation of resources contributed to improved PMTCT processes and outcomes in a resource constrained setting. The intervention requires a clear design, leadership buy-in, building local capacity to use systems improvement methods, and a reliable data system. A systems improvement approach offers a much needed approach to rapidly improve under-performing PMTCT implementation programmes at scale in sub-Saharan Africa

    A Non Membrane-Targeted Human Soluble CD59 Attenuates Choroidal Neovascularization in a Model of Age Related Macular Degeneration

    Get PDF
    Age related macular degeneration (AMD) is the most common cause of blindness amongst the elderly. Approximately 10% of AMD patients suffer from an advanced form of AMD characterized by choroidal neovascularization (CNV). Recent evidence implicates a significant role for complement in the pathogenesis of AMD. Activation of complement terminates in the incorporation of the membrane attack complex (MAC) in biological membranes and subsequent cell lysis. Elevated levels of MAC have been documented on choroidal blood vessels and retinal pigment epithelium (RPE) of AMD patients. CD59 is a naturally occurring membrane bound inhibitor of MAC formation. Previously we have shown that membrane bound human CD59 delivered to the RPE cells of mice via an adenovirus vector can protect those cells from human complement mediated lysis ex vivo. However, application of those observations to choroidal blood vessels are limited because protection from MAC- mediated lysis was restricted only to the cells originally transduced by the vector. Here we demonstrate that subretinal delivery of an adenovirus vector expressing a transgene for a soluble non-membrane binding form of human CD59 can attenuate the formation of laser-induced choroidal neovascularization and murine MAC formation in mice even when the region of vector delivery is distal to the site of laser induced CNV. Furthermore, this same recombinant transgene delivered to the intravitreal space of mice by an adeno-associated virus vector (AAV) can also attenuate laser-induced CNV. To our knowledge, this is the first demonstration of a non-membrane targeting CD59 having biological potency in any animal model of disease in vivo. We propose that the above approaches warrant further exploration as potential approaches for alleviating complement mediated damage to ocular tissues in AMD

    Regional genome transcriptional response of adult mouse brain to hypoxia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since normal brain function depends upon continuous oxygen delivery and short periods of hypoxia can precondition the brain against subsequent ischemia, this study examined the effects of brief hypoxia on the whole genome transcriptional response in adult mouse brain.</p> <p>Result</p> <p>Pronounced changes of gene expression occurred after 3 hours of hypoxia (8% O<sub>2</sub>) and after 1 hour of re-oxygenation in all brain regions. The hypoxia-responsive genes were predominantly up-regulated in hindbrain and predominantly down-regulated in forebrain - possibly to support hindbrain survival functions at the expense of forebrain cognitive functions. The up-regulated genes had a significant role in cell survival and involved both shared and unshared signaling pathways among different brain regions. Up-regulation of transcriptional signaling including hypoxia inducible factor, insulin growth factor (IGF), the vitamin D3 receptor/retinoid X nuclear receptor, and glucocorticoid signaling was common to many brain regions. However, many of the hypoxia-regulated target genes were specific for one or a few brain regions. Cerebellum, for example, had 1241 transcripts regulated by hypoxia only in cerebellum but not in hippocampus; and, 642 (54%) had at least one hepatic nuclear receptor 4A (HNF4A) binding site and 381 had at least two HNF4A binding sites in their promoters. The data point to HNF4A as a major hypoxia-responsive transcription factor in cerebellum in addition to its known role in regulating erythropoietin transcription. The genes unique to hindbrain may play critical roles in survival during hypoxia.</p> <p>Conclusion</p> <p>Differences of forebrain and hindbrain hypoxia-responsive genes may relate to suppression of forebrain cognitive functions and activation of hindbrain survival functions, which may coordinately mediate the neuroprotection afforded by hypoxia preconditioning.</p

    Systematic evaluation of genome-wide methylated DNA enrichment using a CpG island array

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent progress in high-throughput technologies has greatly contributed to the development of DNA methylation profiling. Although there are several reports that describe methylome detection of whole genome bisulfite sequencing, the high cost and heavy demand on bioinformatics analysis prevents its extensive application. Thus, current strategies for the study of mammalian DNA methylomes is still based primarily on genome-wide methylated DNA enrichment combined with DNA microarray detection or sequencing. Methylated DNA enrichment is a key step in a microarray based genome-wide methylation profiling study, and even for future high-throughput sequencing based methylome analysis.</p> <p>Results</p> <p>In order to evaluate the sensitivity and accuracy of methylated DNA enrichment, we investigated and optimized a number of important parameters to improve the performance of several enrichment assays, including differential methylation hybridization (DMH), microarray-based methylation assessment of single samples (MMASS), and methylated DNA immunoprecipitation (MeDIP). With advantages and disadvantages unique to each approach, we found that assays based on methylation-sensitive enzyme digestion and those based on immunoprecipitation detected different methylated DNA fragments, indicating that they are complementary in their relative ability to detect methylation differences.</p> <p>Conclusions</p> <p>Our study provides the first comprehensive evaluation for widely used methodologies for methylated DNA enrichment, and could be helpful for developing a cost effective approach for DNA methylation profiling.</p

    A Continental-Wide Perspective: The Genepool of Nuclear Encoded Ribosomal DNA and Single-Copy Gene Sequences in North American Boechera (Brassicaceae)

    Get PDF
    74 of the currently accepted 111 taxa of the North American genus Boechera (Brassicaceae) were subject to pyhlogenetic reconstruction and network analysis. The dataset comprised 911 accessions for which ITS sequences were analyzed. Phylogenetic analyses yielded largely unresolved trees. Together with the network analysis confirming this result this can be interpreted as an indication for multiple, independent, and rapid diversification events. Network analyses were superimposed with datasets describing i) geographical distribution, ii) taxonomy, iii) reproductive mode, and iv) distribution history based on phylogeographic evidence. Our results provide first direct evidence for enormous reticulate evolution in the entire genus and give further insights into the evolutionary history of this complex genus on a continental scale. In addition two novel single-copy gene markers, orthologues of the Arabidopsis thaliana genes At2g25920 and At3g18900, were analyzed for subsets of taxa and confirmed the findings obtained through the ITS data

    Accounting for Ecosystem Alteration Doubles Estimates of Conservation Risk in the Conterminous United States

    Get PDF
    Previous national and global conservation assessments have relied on habitat conversion data to quantify conservation risk. However, in addition to habitat conversion to crop production or urban uses, ecosystem alteration (e.g., from logging, conversion to plantations, biological invasion, or fire suppression) is a large source of conservation risk. We add data quantifying ecosystem alteration on unconverted lands to arrive at a more accurate depiction of conservation risk for the conterminous United States. We quantify ecosystem alteration using a recent national assessment based on remote sensing of current vegetation compared with modeled reference natural vegetation conditions. Highly altered (but not converted) ecosystems comprise 23% of the conterminous United States, such that the number of critically endangered ecoregions in the United States is 156% higher than when calculated using habitat conversion data alone. Increased attention to natural resource management will be essential to address widespread ecosystem alteration and reduce conservation risk

    Linking the Epigenome to the Genome: Correlation of Different Features to DNA Methylation of CpG Islands

    Get PDF
    DNA methylation of CpG islands plays a crucial role in the regulation of gene expression. More than half of all human promoters contain CpG islands with a tissue-specific methylation pattern in differentiated cells. Still today, the whole process of how DNA methyltransferases determine which region should be methylated is not completely revealed. There are many hypotheses of which genomic features are correlated to the epigenome that have not yet been evaluated. Furthermore, many explorative approaches of measuring DNA methylation are limited to a subset of the genome and thus, cannot be employed, e.g., for genome-wide biomarker prediction methods. In this study, we evaluated the correlation of genetic, epigenetic and hypothesis-driven features to DNA methylation of CpG islands. To this end, various binary classifiers were trained and evaluated by cross-validation on a dataset comprising DNA methylation data for 190 CpG islands in HEPG2, HEK293, fibroblasts and leukocytes. We achieved an accuracy of up to 91% with an MCC of 0.8 using ten-fold cross-validation and ten repetitions. With these models, we extended the existing dataset to the whole genome and thus, predicted the methylation landscape for the given cell types. The method used for these predictions is also validated on another external whole-genome dataset. Our results reveal features correlated to DNA methylation and confirm or disprove various hypotheses of DNA methylation related features. This study confirms correlations between DNA methylation and histone modifications, DNA structure, DNA sequence, genomic attributes and CpG island properties. Furthermore, the method has been validated on a genome-wide dataset from the ENCODE consortium. The developed software, as well as the predicted datasets and a web-service to compare methylation states of CpG islands are available at http://www.cogsys.cs.uni-tuebingen.de/software/dna-methylation/

    Systematic review of beliefs, behaviours and influencing factors associated with disclosure of a mental health problem in the workplace

    Get PDF
    Stigma and discrimination present an important barrier to finding and keeping work for individuals with a mental health problem. This paper reviews evidence on: 1) employment-related disclosure beliefs and behaviours of people with a mental health problem; 2) factors associated with the disclosure of a mental health problem in the employment setting; 3) whether employers are less likely to hire applicants who disclose a mental health problem; and 4) factors influencing employers' hiring beliefs and behaviours towards job applicants with a mental health problem
    • 

    corecore