6,491 research outputs found
Enhancement of Photoemission on P-type GaAs using Surface Acoustic Waves
We demonstrate that photoemission properties of GaAs photocathodes (PCs) can
be altered by surface acoustic waves (SAWs) generated on the PC surface due to
dynamical piezoelectric fields of SAWs. Simulations with COMSOL indicate that
electron effective lifetime in p-doped GaAs may increase by a factor of 10x to
20x. It implies a significant, by a factor of 2x to 3x, increase of quantum
efficiency (QE) for GaAs PCs. Essential steps in device fabrication are
demonstrated, including deposition of an additional layer of ZnO for
piezoelectric effect enhancement, measurements of I-V characteristic of the SAW
device, and ability to survive high-temperature annealing.Comment: 5 pages, 4 figure
A Requirement-centric Approach to Web Service Modeling, Discovery, and Selection
Service-Oriented Computing (SOC) has gained considerable popularity for implementing Service-Based Applications (SBAs) in a flexible\ud
and effective manner. The basic idea of SOC is to understand users'\ud
requirements for SBAs first, and then discover and select relevant\ud
services (i.e., that fit closely functional requirements) and offer\ud
a high Quality of Service (QoS). Understanding users requirements\ud
is already achieved by existing requirement engineering approaches\ud
(e.g., TROPOS, KAOS, and MAP) which model SBAs in a requirement-driven\ud
manner. However, discovering and selecting relevant and high QoS\ud
services are still challenging tasks that require time and effort\ud
due to the increasing number of available Web services. In this paper,\ud
we propose a requirement-centric approach which allows: (i) modeling\ud
users requirements for SBAs with the MAP formalism and specifying\ud
required services using an Intentional Service Model (ISM); (ii)\ud
discovering services by querying the Web service search engine Service-Finder\ud
and using keywords extracted from the specifications provided by\ud
the ISM; and(iii) selecting automatically relevant and high QoS services\ud
by applying Formal Concept Analysis (FCA). We validate our approach\ud
by performing experiments on an e-books application. The experimental\ud
results show that our approach allows the selection of relevant and\ud
high QoS services with a high accuracy (the average precision is\ud
89.41%) and efficiency (the average recall is 95.43%)
Particle interactions and lattice dynamics: Scenarios for efficient bidirectional stochastic transport?
Intracellular transport processes driven by molecular motors can be described
by stochastic lattice models of self-driven particles. Here we focus on
bidirectional transport models excluding the exchange of particles on the same
track. We explore the possibility to have efficient transport in these systems.
One possibility would be to have appropriate interactions between the various
motors' species, so as to form lanes. However, we show that the lane formation
mechanism based on modified attachment/detachment rates as it was proposed
previously is not necessarily connected to an efficient transport state and is
suppressed when the diffusivity of unbound particles is finite. We propose
another interaction mechanism based on obstacle avoidance that allows to have
lane formation for limited diffusion. Besides, we had shown in a separate paper
that the dynamics of the lattice itself could be a key ingredient for the
efficiency of bidirectional transport. Here we show that lattice dynamics and
interactions can both contribute in a cooperative way to the efficiency of
transport. In particular, lattice dynamics can decrease the interaction
threshold beyond which lanes form. Lattice dynamics may also enhance the
transport capacity of the system even when lane formation is suppressed.Comment: 25 pages, 17 figures, 2 table
Freeform Optical Surfaces: Report from OSA's First Incubator Meeting
Just as business incubator programs are designed to support the development of fledgling companies, OSA?s new incubator meeting series is structured to encourage the growth of exciting new areas within optics. The first one was devoted to the topic of freeform optics-a field that is actively evolving due to recent technological advances
Hybrid in vitro diffusion cell for simultaneous evaluation of hair and skin decontamination: temporal distribution of chemical contaminants
Most casualty or personnel decontamination studies have focused on removing contaminants from the skin. However, scalp hair and underlying skin are the most likely areas of contamination following airborne exposure to chemicals. The aim of this study was to investigate the interactions of contaminants with scalp hair and underlying skin using a hybrid in vitro diffusion cell model. The in vitro hybrid test system comprised “curtains” of human hair mounted onto sections of excised porcine skin within a modified diffusion cell. The results demonstrated that hair substantially reduced underlying scalp skin contamination and that hair may provide a limited decontamination effect by removing contaminants from the skin surface. This hybrid test system may have application in the development of improved chemical incident response processes through the evaluation of various hair and skin decontamination strategies.Peer reviewedFinal Published versio
Antibunched photons emitted by a dc-biased Josephson junction
We show experimentally that a dc biased Josephson junction in series with a high-enough-impedance microwave resonator emits antibunched photons. Our resonator is made of a simple microfabricated spiral coil that resonates at 4.4 GHz and reaches a 1.97kΩ characteristic impedance. The second order correlation function of the power leaking out of the resonator drops down to 0.3 at zero delay, which demonstrates the antibunching of the photons emitted by the circuit at a rate of 6×10^7 photons per second. Results are found in quantitative agreement with our theoretical predictions. This simple scheme could offer an efficient and bright single-photon source in the microwave domain
- …
